Para asistencia en español, llame al +52 (442) 295-1567 o envíe un correo electrónico a info@koboldusa.com

How is Stormwater Flow Measured?

Learn all about stormwater and how it can be measured using level sensors with wiers or flumes.

Which is Correct, "Stormwater" or "Storm Water"?

According to the US Environmental Protection Agency, the correct term is one word: “stormwater”.

What is Stormwater?

Stormwater is the run-off or pooling of rain, melting snow, or any precipitation types in between that cannot be absorbed quickly enough by the surface it falls on. Stormwater is usually caused by heavy rainfall or significant amounts of snow melting at once. Stormwater consists of the original water and any other elements, whether they are liquids or solids, that have dissolved into the water or are being carried by the water.

Common contaminants contained in stormwater include pesticides, chemicals, deicers, road salt, oil, grease, you get the picture about possible liquids that can be absorbed easily by running or pooling water. The contaminants can also be sediment that has been eroded by the hydraulic force of the moving water and has continued to be carried by the force of the flow.

Depending on the rate of rainfall/melt, the hydraulic force produced by the movement of water can also collect large objects into its stream of flow and continue to carry them along. A simple low volume flow example would be a tree branch that flows downhill into a stream. An extreme volume example is a flooded river with a car bobbing up and down in it as it goes on its merry way.

Depending on the situation, stormwater can be a harmless annoyance, or it can be dangerous, like when it kills people who think they can make it through that giant lake on the road or go over a bridge that has water running over it. The damage caused by stormwater can be minimal or catastrophic, like the flooding damage caused by hurricanes.

What is the Difference between Rain Water and Stormwater?

Stormwater is the excess water that was not absorbed into the soil or existing bodies of water and by virtue of gravity is on the move or is accumulating and pooling in places it normally doesn’t. Rainfall is one of the events that creates and causes stormwater, if it occurs in sufficient amounts to outpace local absorption capabilities. Simply put, rainwater causes stormwater, but not all rainwater becomes stormwater. Stormwater can also be formed by rapidly melting snow, but not all melted snow becomes stormwater.

What Does Stormwater Consist of?

Simply put, it consists of anything it took with it as it moved. The options are endless. Think about the stormwater from a flooded parking lot as an example. The stormwater running off or pooling up in the parking lot is likely to contain all sorts of lovely things like oil, grease, anti-freeze, wads of gum, and mushy paper napkins.

Urban Stormwater Drain

How Fast Does Stormwater Occur?

The accumulation of storm water depends on many factors like the rate of rain or snow melt, the pitch of the slope in the immediate area, and the type of surface that it falls on. It is pretty logical. The steeper the ground, the faster gravity can move the water. It also makes sense that the surface properties are a large determining factor. If I dump 500 gallons of water all at once on a concrete slope, it has zero chance of being absorbed and decreased in volume by any absorption by the surface under it.

If I dump the same amount on a soil with a high degree of permeability and a large amount of vegetation, it is obvious that by the time the water reaches the bottom of the slope, it will have decreased somewhat whereas the concrete slope will experience no decrease at all. The stormwater on the hillside with vegetation also will have moved with much less speed and force.

It is then not a surprise that stormwater is a more prevalent concern in largely populated areas where the earth’s surface is covered predominantly by concrete or building roofs. More rural areas with lots of exposed ground offer much more opportunity for the water to find it’s way quickly into the ground and back into the water table. Stormwater can still be an element of concern in rural areas where there are low lying areas or areas along riverbeds and lakes prone to flooding.

Rural Stormwater Snow Melt

What Problems Can Stormwater Cause?

Depending on the rate of rainfall and the terrain, the problems caused by stormwater can be varied. Here are a few common problems caused by stormwater.

  • Infrastructure Damage
  • Flooded Roadways
  • Water Contamination
  • Habitat and Ecosystem Destruction for Plants, Animals, and Humans

Can Stormwater Be Processed in the Same System as Wastewater?

In other times and places, sure, it was done. London in Victorian times would be a good example. It all just flowed down the streets mixed together and ended up in the river without treatment. However, in modern times in the US? Nope, it really shouldn’t be and isn’t happening.

There is too much risk in the unpredictable nature of the amount of stormwater that can happen at any given time to allow for safe and consistent processing of wastewater if both were handled and controlled by one combined system. Does stormwater sometimes cause wastewater to be prematurely released back into the watershed? Yes, unfortunately that does happen.

Overflowing Manhole Stormwater

How is Stormwater Managed?

The field of stormwater management seeks to monitor, measure, divert, and control the flow of stormwater. As mentioned, it is a critical element of infrastructure in highly populated areas to minimize inconveniences and disasters. When designing and laying out cities, it is important to consider how much ground with the ability to absorb water could be lost to development and to mitigate that. Typically, the traditional manner of thinking was to focus solely of moving the water efficiently and safely to where it could be deposited in a distant water source. It was viewed only from the angle that it is a problem to fix.

With increased environmental awareness and an impetus to steward our water resources, there is new thinking when it comes to stormwater handling. Stormwater, if the danger and damage is removed, can now be viewed as an asset to be utilized. Green infrastructure planning tactics seek to use the stormwater for benefit in the immediate area it is generated in by increasing the amount of open ground that can absorb it and by incorporating supporting plant life that can reduce air pollution. Simply put, it is good to have more parks and open spaces created that can support plant life that can use up the stormwater. The plant life then offers even more increased benefit back to us by reducing air pollution.

Diligence in managing stormwater is law and is overseen by governing bodies as it is in everyone’s best interest to protect the population and the environment. The Clean Water Act and the National Pollutant Discharge Elimination System (NPEDES) limits the amounts of discharge into US water sources.

Urban Planning Stormwater Management

Can Flow Meters Measure Stormwater?

Because stormwater flow is usually conducted in open channel piping or other open channel means, the tactics used in measuring the stormwater flow are a bit different than most flow measurement applications. Most flow applications can be accommodated using flow meters.

However, with stormwater measurement, a different tactic is employed. An ultrasonic level sensor is often used. The ultrasonic level sensor does not need to touch the surface of the stormwater and is more immune, by the nature of its build and technology, to damage than other traditional level sensors. Because there are no moving parts, they also deliver a long service life.

What is a Weir for Stormwater?

The stormwater is usually measured in a weir or a flume. A weir can come in many shapes and sizes, but it functions as a brief holding tank that retains a certain level of water flowing through it at any given time. Because the volume of the weir can be calculated and it is a variable that remains fixed, a level sensor can detect the top of the water line. This can then be processed with microelectronics into a flow measurement.

The level sensor essentially acts like the lines on your measuring cups, with a height of the liquid telling you how much volume is in the measuring cop because the volume of the measuring cup is a fixed variable.

This sort of measurement could also be achieved by hash marks on the side of the weir, but that would require in-person confirmation. Stormwater ultrasonic level sensors, like our NUS series, are equipped with electronic means of communication and can convey level and flow information continuously without a person on scene.

What is a Flume for Stormwater?

A stormwater flume is essentially a concrete ditch that diverts and carries stormwater. The top of the channel is open, and it has raised sides to contain the stormwater. Flow measurement can happen in the flume as well, with the flume having a fixed volume based the shape of the concrete flume and a level sensor detecting the liquid level in the stormwater flume as it travels in the flume.

Urban Stormwater Weirs

KOBOLD NUS Series Stormwater Level Sensors

Our ultrasonic stormwater level sensors, the NUS-series, offer a superior solution. Specific programming options for stormwater weirs and flumes are pre-programmed, removing the guesswork out of correct configuration and measurement. The following weir and flume types are already preprogrammed in the NUS Series.

  • Khafagi venturi flume
  • Bottom step weir
  • Suppressed rectangular or BAZIN weir
  • Trapezoidal weirs
  • V-notch weir
  • General Parshall flume
  • Palmer-Bowlus flume variations
  • Thomson notch weir
  • Circular weir

How Do You Install Open Channel Flow Measurement Ultrasonic Level Sensors?

When installing this sort of stormwater level sensor, keep the following installation recommendations in mind.

  • For the best accuracy, install the stormwater ultrasonic level sensor as close as possible above the expected maximum water level.
  • Install the level sensor in a place defined by the characteristics of the metering channel along the longitudinal axis of the flume or weir.
  • In some cases, foam may develop on the surface. Make sure that the surface opposite to the sensor remains free of foam for proper sound reflection.
  • From an accuracy standpoint, the length of the channel sections preceding and following the measuring channel section are of critical importance.

KOBOLD supports their products with the best personal service. If you have any questions about purchasing or installing a NUS-Series ultrasonic stormwater level sensor, please do not hesitate to consult our expert engineering staff in Pittsburgh for help at 412-788-2830.

Learn more about why you should partner with KOBOLD for your application.

Choose a Stormwater Flow Measurement System
NUS-4
Ultrasonic Level Transmitter
Starting at
$1,367
NUS-4 - Ultrasonic Level Transmitter
Measuring Range
Liquids up to 80 feet
Fittings
1-1/2", 2" NPT, 3",5",6" ANSI Flange
Max. Pressure
40 PSIG
Max. Temperature
194 °F (90 °C)
Power Supply
12...36 VDC
    Measuring Range of Liquids up to 25 m Solids up to 10 m
    Narrow 5-7° Beam Angle
    Polypropylene or PVDF Wetted Parts
    Accuracy of ± 0,2 % of Reading, + 0,05 % of F.S.
    4-20 mA 2-Wire Output Std, Relays/Display Optional
NUS-7
Compact Ultrasonic Level Transmitter
Starting at
$1,142
NUS-7 - Ultrasonic Level Transmitter for Liquids
Measuring Range
Liquids up to 20 Feet
Accuracy
± 0.2% of Reading + 0.05% of Full Scale
Wetted Material
PP or PVDF
Maximum Pressure
40 PSIG
Maximum Temperature
194 °F (90 °C)
Fittings
2" NPT, G 2
Outputs
4-20 mA HART®, Relay
    Programmable Features
    Relay Functions (Differential, Flow Pulse, etc.)
    Measurement Configuration (Units, Function, Close-end Blocking)
    Measurement Optimization (Damping, Tracking Speed, Sound Velocity Correction, etc.)
    32 Point Linearization, Measurement Simulation
    Information/Diagnostics (Echo Map and Signal/Noise)

Explore Our Product Line

Discover KOBOLD USA's expertise in industrial instrumentation, offering advanced solutions for flow, pressure, level, and temperature measurement. Our products, synonymous with quality and precision, cater to a wide range of industries, backed by expert engineering and exceptional customer support.

Industrial Instrumentation

Why Choose Us

Choosing KOBOLD means opting for a partner who understands your needs and is equipped to help you tackle the challenges of modern industry. We are not just a supplier; we are a partner committed to contributing to your success.

  • Innovative Solutions At KOBOLD, we are continually advancing our technology to meet the ever-evolving challenges of the industrial world. Our products incorporate the latest innovations, ensuring they remain at the forefront of measurement and control technology.
  • Customization We understand that each industry has its specific needs. That's why we specialize in providing customized solutions, tailored to fit the exact requirements of your operations.
  • Quality and Reliability Our products are synonymous with quality and reliability. Manufactured under stringent standards, they guarantee accurate and consistent performance, contributing to the efficiency and safety of your processes.
  • Global Expertise, Local Support With our global presence, we bring a wealth of international expertise. Combined with local support, we ensure that our clients receive the best of both worlds - world-class technology with personalized, local service.
  • Comprehensive Range Our diverse range of products means we can cater to a wide array of measurement and control needs, making us a one-stop solution for many of our clients.
  • Customer-Centric Approach We pride ourselves on being customer-centric. From consultation to after-sales service, our team is dedicated to providing excellent support, ensuring that your experience with us adds value to your operations.
Talk to an Expert

Literature

Explore KOBOLD's range of innovative flow instrumentation and measuring solutions through detailed product summaries and brochures, available for easy download.

Literature
LinkedIn

Join our LinkedIn community

At Kobold, we believe in sharing our story, and LinkedIn is where we bring it to life. Follow us to stay connected with the pulse of our company and the instrumentation industry.

What you'll find:

  • Employee spotlights that showcase the talented individuals behind our success
  • Product updates to keep you informed about our latest innovations
  • Success stories that demonstrate the real-world impact of our solutions
  • Educational articles to enhance your industry knowledge

Our LinkedIn page reflects our core values: a focus on our people, continuous improvement of our processes, and the excellence of our products. We strive to create content that's not just informative, but also engaging and valuable to our followers.

We appreciate every member of our LinkedIn community and always welcome your feedback. Your insights help us improve and grow.

Connect with us today and be part of our journey in the world of instrumentation and measurement technology. We look forward to engaging with you!

Grow with Us on LinkedIn!

KOBOLD Worldwide

KOBOLD proudly serves clients globally with our extensive network of locations. In the USA, we're based in Pittsburgh, PA, providing top-tier service and expertise in flow measurement technology.

Office Locations
USA
Germany
Australia
Austria
Belgium
Bulgaria
Canada
China, Peoples Republic
Czech Republic
France
Hungary
India
Indonesia
Italy
Malaysia
Mexico
Netherlands
Perú
Poland
Republic of Korea
Singapore
Slovakia
Spain
Switzerland
Thailand
Tunisia
Turkey
United Kingdom
Vietnam
Other Members of the KOBOLD group
Heinrichs Henschen Mesura Unirota