

Operating Instructions for Guided Wave Radar Level Transmitter (TDR)

Model: NGM

We don't accept warranty and liability claims neither upon this publication nor in case of improper treatment of the described products.

The document may contain technical inaccuracies and typographical errors. The content will be revised on a regular basis. These changes will be implemented in later versions. The described products can be improved and changed at any time without prior notice.

1. Contents

1.	Contents	
2.	Note	
3.	Instrument Inspection	
4.	Regulation Use	
5.	Operating Principle	
6.	Mechanical Connection	-
	6.1 Mounting	
	6.2 Extended temperature range	
	6.3 PTFE coated single rod probe	
	6.4 Mounting considerations	
	6.5 Cable entries and cable glands	10
7.	Electrical Connection	
	7.1 Wiring	
8.	Operation / Configuration / Adjustments	
	8.1 Control Elements	
	8.2 Configuration single rod probe or wire rope probe	
	8.3 Configuration Coaxial probe	
	8.4 probe length and measuring range	19
	8.5 disturbance signal scan	
	8.6 Guide to communicating from a PC to a NGM probe	21
	(Configuration of device specific parameters)	
9.	Technical Information	
10	Order Codes	49
11	. Dimensions	49
12	. Safety Instructions for Ex-Versions Model NGM	50
	Disposal	
14	. EU Declaration of Conformance	57
	. UK Declaration of Conformity	
	ATEX Certificate	

Manufactured and sold by:

KOBOLD Instruments Inc 1801 Parkway View Drive Pittsburgh PA 15205-1422 Tel.: 412-788-2830 Fax: 412-788-4890 E-Mail: info@koboldusa.com Internet: www.koboldusa.com

2. Note

Please read these operating instructions before unpacking and putting the unit into operation. Follow the instructions precisely as described herein. The instruction manuals on our website <u>www.koboldusa.com</u> are always for currently manufactured version of our products. Due to technical changes, the instruction manuals available online may not always correspond to the product version you have purchased. If you need an instruction manual that corresponds to the purchased product version, you can request it from us free of charge by email (<u>info@koboldusa.com</u>) in PDF format, specifying the relevant invoice number and serial number. If you wish, the operating instructions can also be sent to you by post in paper form against an applicable postage fee.

Operating instructions, data sheet, approvals and further information via the QR code on the device or via <u>www.koboldusa.com</u>

The devices are only to be used, maintained and serviced by persons familiar with these operating instructions and in accordance with local regulations applying to Health & Safety and prevention of accidents.

When used in machines, the measuring unit should be used only when the machines fulfil the EC-machine guidelines.

This quick installation guide gives instructions for mounting, wiring, and basic configuration of NGM. This will be sufficient to achieve a fully functional sensor in most applications. For further details and advanced configuration of NGM, please contact your local distributor or KOBOLD directly.

3. Instrument Inspection

Instruments are inspected before shipping and sent out in perfect condition. Should damage to a device be visible, we recommend a thorough inspection of the delivery packaging. In case of damage, please inform your parcel service / forwarding agent immediately, since they are responsible for damages during transit.

Scope of delivery:

The standard delivery includes:

• Guided Wave Radar Level Transmitter model: NGM

4. Regulation Use

Any use of the Guided Wave Radar Level Transmitter, model: NGM, which exceeds the manufacturer's specification may invalidate its warranty. Therefore, any resulting damage is not the responsibility of the manufacturer. The user assumes all risk for such usage.

5. Operating Principle

NGM uses TDR (Time Domain Reflectometry) technology, which is also known as Guide Microwave or Guided Wave Radar. This means that low-energy and high-frequency electromagnetic impulses, generated by the sensor's circuitry, are propagated along the probe which is immersed in the liquid or solid to be measured.

When these impulses hit the surface of the media, part of the impulse energy is reflected back up the probe to the circuitry which then calculates the level from the time difference between the impulses reflected.

The sensor can output the analysed level as 4...20 m analogue output, or it can convert the values into freely programmable switching output signal.

6. Mechanical Connection

6.1 Mounting

In case NGM is delivered with a detached probe, attach the probe onto the small threaded stud below the hexagon. Ensure that you mount the counter nut first to secure the probe connection: it has to be interlocked against the probe, NOT against the plastic of the feedthrough (this would result in sheering off the small threaded stud; permanently damaging the sensor).

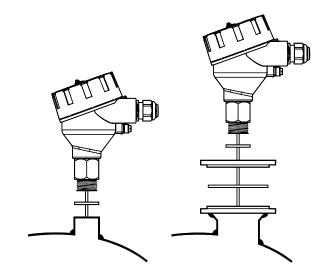


Figure1: mounting

NGM is mounted vertically to the tank via its connection thread, which is screwed directly into a standard threaded tank connection, i.e. weld-in socket, or it can be screwed into a flange, which is then connected to a tank nozzle.

NGM should not be welded directly into the tank. Neither should flanges be welded onto NGM. Welding on the metal parts of NGM will cause serious damage to the sensor.

Do not lift or handle NGM by its probe; this can cause excessive stress on the probe connection. NGM should be handled by the hexagon or the lower section of the housing. Do not screw in NGM by its housing; it should be tightened only via its hexagon (wrench size 32mm).

Tighten the coaxial probe only at its lower hexagon; the upper hexagon of the coaxial probe is not needed for mounting.

The customer has to ensure proper sealing of the sensor connection; based on his process conditions like temperature, pressure and resistance against his process liquids and atmosphere.

G thread connections require a suitable gasket for pressure-tight joints.

The G3/4A connection thread of NGM is supplied with a gasket made of Klingersil C-4400, thickness 2mm. The suggested tightening torque for this thread size, this type of gasket, and a process pressure of max. 40bar is 25Nm (maximum permissible torque: 45 Nm).

For NPT thread connections, pressure-tight joints require a sealant directly on the threads.

6.2 Extended temperature range

NGM with the extended temperature option must be properly included into the tank insulation to prevent excessive temperatures at the sensor housing due to thermal radiation or convection, as well as prevention of condensate formation. However, the insulation layer should not reach higher than the hexagon nut; the cooling fins of the radiator-style temperature extension have to be outside the insulation in order to function properly. If necessary, adjust the height of the mounting socket or nozzle accordingly.

Figure 2: extended temperature option

6.3 PTFE coated single rod probe

PTFE coated probes must be handled carefully to prevent damage to the coating. For detailed instruction show to mount a PTFE coated NGM, please contact your local distributor or KOBOLD directly.

Figure 3: single rod probe, PTFE coated

6.4 Mounting considerations

The probes should be installed so that they are not directly impacted by liquids flowing out of the filling inlet.

They should neither touch nor sway towards other objects inside the tank or the tank/nozzle walls; e.g. by agitator swirls. In applications with very strong fluid movements, which can also cause excessive lateral force on the probe, it is recommended to anchor the probe. The anchoring fixtures are customer supplied.

For further details about mounting NGM or if you would like to anchor the probes, please contact your local distributor or KOBOLD directly.

single rod / wire rope	probe	
coaxial probe		
nozzle diameter	1	>50mm
nozzle height	-	<300mm
clearance to tank wall or other internal objects	-	>100mm
clearance between probe end and tank bottom	-	>2mm
diameter of bypass chamber / stilling well	_2	>25mm

- = no restrictions

¹ enough diameter to fit in the coaxial tube (Ø17,2mm)

² enough diameter to fit in the coaxial tube (Ø17,2mm) and enough room around the probe for the liquid to flow in and out of the bypass chamber / stilling well

Figure 4: mounting considerations

The single rod probe is suitable for a very wide range of applications in liquids, but the signal has a wider detection radius around the rod. Thus, it is more

responsive for measurement signal disturbances which can be easily overcome by observing a few mounting considerations (see Fig.4) and making simple configuration adjustments to the sensor.

Caution! While using single rod or wire rope probes, activating the powerful disturbance signal suppression feature is strongly recommended.

However, those work most efficiently on stationary interference targets like tall and narrow nozzles or close-by objects. In case that non-stationary interference targets close to the single rod probe, like slowly rotating agitator blades, cause problems with the measurement, it is recommended to use the coaxial probe. The single rod probe is also the recommended probe type for mounting NGM into bypass chambers or stilling wells. In this case, plastic centering disks are needed to prevent the probe from contacting the wall. Please contact your local distributor or KOBOLD directly for further details.

					covered Probe	e length			
	6m				12m			20m	
					Tank Ø	i			
material	3m	6m	9m	3m	6m	9m	3m	6m	9m
Wheat	0,7	0,8	0,9	2	2,7	3	4,1	-	-
Corn	0,6	0,7	0,8	1,8	2,4	2,7	3,7	-	-
Rice	0,5	0,7	0,7	1,5	2,1	2,4	2,8	4,5	
Flour	0,3	0,4	0,4	1,1	1,3	1,5	2,4	3,3	3,7
Sugar	0,7	1	1	1,9	2,8	3,4	3,4	-	-
Silica sand	1,1	1,4	1,5	3,2	4,5	-	-	-	-
Cement	1,2	1,5	1,7	3,2	4,7	-	-	-	-
Alumina	0,9	1,1	1,3	2,3	3,5	4,2	4,3	-	-
Phosphate fertilizer	1,8	2,3	2,6	5	-	-	-	-	-
Fly ash	1	1,3	1,4	2,5	3,9	4,7	4,7	-	-
Coal dust	0,7	0,9	1	1,8	2,7	3,3	3,3	-	-
Plastic pellets	0,4	0,5	0,5	1	1,5	1,7	1,9	3,2	4

- = exceeds the max. tensile load of NGM: 5kN.

Figure 5: approx. pulling forces [kN]

Above figures are guidelines to estimate the approx. pulling forces from freeflowing solids acting on a suspended 4mm wire rope probe without any anchoring in a metal tank with smooth walls

The wire rope probe is recommended for installations in solids, tall tanks and where limited headroom is available. Its performance characteristics and mounting considerations are similar to the single rod probe.

In addition, please consider the following advice when using NGM in solid applications:

The bulk solid inside the tank or silo can exert a considerable tensile load on the wire rope probe, depending on properties of the bulk solid, tank dimension sand covered probe length (see Fig. 5). This can lead to considerable downwards pulling forces on the tank roof, which has to be able to withstand the max. tensile load of NGM: 5kN

It is recommended that the tank be empty during installation. This ensures that the probe hangs down straight and does not get entangled. After installation also regularly check if the wire rope probe got entangled or unbraided.

Some bulk solids easily form build-up on the tank wall or on internal structures. This will interfere with the measurements. Choose a mounting position where the wire rope probe is not in contact with, or close to, such product build-up

For anchoring the wire rope probe in solid applications, please contact your local distributor or KOBOLD directly

The coaxial probe does not have restrictions regarding mounting position, tank connection, and proximity to the tank wall or other objects inside the tank.

The coaxial probe is recommended for installing NGM into a non-metallic tank or open pit. If that is not possible, single rod or wire rope probes can be used when NGM is mounted into at least a DN50 metal flange or screwed into a metal sheet with at least Ø150mm.

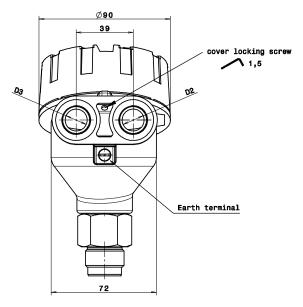


Figure 6: cable entries

6.5 Cable entries and cable glands

The housing has two cable entries and can be ordered with assembled standard screw plugs and cable glands. Nevertheless, the customer has to confirm the suitability of those cable glands for his specific application requirements and cabling; and replace them when necessary.

Both cable entries can be fitted with cable glands or suitable conduit systems. If only one cable gland is fitted, it is recommended to use cable entry D2 (see Fig. 6). Then cable entry D3 has to be closed with a suitable screw plug.

IP68-rated screw plugs and cable glands have to be properly sealed and have to be properly tightened around cable of suitable type and diameter to ensure the IP68 rating of the housing.

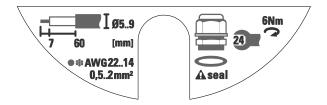
Cable entries with metric threads can be sealed by mounting the suitable screw plug or cable gland with matching rubber washers underneath.

Cable entries with NPT threads require a sealant directly on the thread of the screw plug or cable gland.

For M20x1,5 cable entries, NGM comes assembled with:

1 x cable gland M20x1,5, IP68, nylon PA66, for non-armoured cable Ø5...9mm, with EPDM washer, max. tightening torque 6Nm on all hexagons, wrench size 24mm. For protection during shipment, it is closed with an EPDM sealing plug which has to be removed for cabling

1 x screw plug, IP68, M20x1,5, nylon PA66, with EPDM washer


For ¹/₂" NPT cable entries, NGM comes assembled with:

2 x screw plug, 1/2" NPT, PE-LD. They are not IP68 and are only for housing protection during shipment. They have to be replaced by the customer

When wiring with shielded or armoured cable, suitable cable glands have to be used. The contact between the metal housing and the shielding of the cable is made by using a suitable EMC-type cable gland. Ground the shielding of the cable only on the sensor side; not on the supply side.

7. Electrical Connection

7.1 Wiring

Figure 7: lower sticker on the black plastic cartridge

Verify that the power supply for the sensor is switched off.

Establish an equipotential connection (potential equalization) between the external earth terminal of NGM and the closest ground potential terminal of the tank.

Open the housing cover by turning it counter clockwise. It may be necessary to loosen the cover locking screw with an allen key size 1,5mm. The cover has a safety chain to prevent it from falling to the ground after being unscrewed.

The lower sticker on the black plastic cartridge inside the housing gives instructions for the standard M20x1,5 cable gland (Fig. 7). When other cable glands are being used, their details have to be observed instead.

Loosen the cable gland and pull the cable through the cable gland into the housing. Pull it far enough to have a convenient length for stripping and handling the cable.

Install cable with a drip loop outside the housing where the bottom of the loop must be lower than the cable entry of the housing.

Dismantle the cable carefully and strip the wires as indicated on the sticker.

The stripped wire ends are connected to the sensor electronic via the green screw less, cage clamp terminal block. It can accommodate stranded and solid wires 0,5...2mm² / AWG 22...14. The usage of cable end sleeves with insulation collar is not recommended.

Simply press an orange lever straight down with a small flat tip screwdriver, insert a stripped wire end into the terminal hole, and release the orange lever; the wire is now connected.

The upper sticker inside the housing illustrates the inputs and outputs if the sensor. Connect all wires accordingly, as indicated in Fig. 8.

Pull the cable back, but make sure its mantle does not retract into the cable gland.

Tighten the cable gland to ensure proper sealing function.

Switch on the power supply for the sensor.

The sensor LED should start blinking green within 6 seconds after connecting the power (during this start-up time the LED is solid green). The blinking green LED indicates that the sensor is in measuring mode and working correctly.

Do not tighten the housing cover yet. Some basic configuration is still to be done...

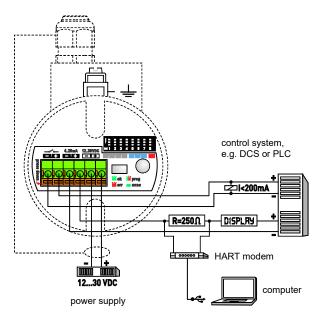
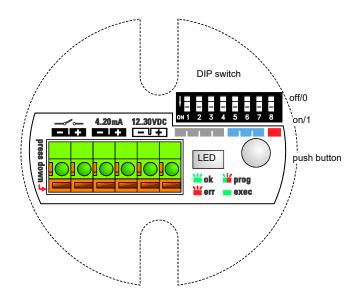



Figure 8: wiring

8. Operation / Configuration / Adjustments

8.1 Control Elements

Basic configuration of NGM can be done directly on the device via three control elements: a DIP switch, a single push button and a LED for visual feedback. All settings required to get NGM fully operational can be performed directly on the device; or NGM can be ordered completely pre-configured.

All three control elements are enclosed in the black plastic cartridge inside the housing.

The DIP switch has 8 small white levers. Small numbers from 1 to 8 are printed underneath the levers: they indicate the DIP switch positions and correspond to the ones in Fig.9.

The upper position of a lever is off/0 and the lower position is on/1. On the left side of the DIP switch is also a small indication of the on/1 state.

The off/0 and on/1 states of the DIP switch correspond to the 0/1 indications in Fig.9.

The upper sticker on the black plastic cartridge shows three colour segments close to the DIP switch: red, grey, and blue; they correspond to the coloured rows in Fig.10.

red: indicates DIP switch position 8 which switches between measuring and configuration mode. Only when DIP switch position 8 is on/1, NGM can be configured; configuration mode is indicated by the LED blinking alternately green and red.

When DIP switch position 8 is off/0, NGM is in measuring mode; indicated by the LED blinking green.

It is only possible to enter the configuration mode when DIP switch positions 1 to 7 are off/0 before setting DIP switch position 8 to on/1; otherwise, the LED is blinking red to indicate an error

blue: indicates the DIP positions through which groups of functions are selected, e.g. all functions related to the analog current output or the switching output

grey: indicates the DIP positions through which individual functions/configuration settings are selected

When entering into configuration mode, always start from DIP switch position 8 and move towards position 1.

When exiting configuration mode, always set back all the DIP switch positions to 0, starting from position 1 and move towards position 8.

After setting all DIP switch positions to represent the 0/1 sequence of the desired function (as described in Fig.10), the push button has to be pressed to execute the desired function. Execution of the function is indicated by the LED remaining green until the function has been properly executed, in which case the LED returns to blinking alternately green and red.

DIP switch Position]		
1 2 3 4 5 6 7 8			
DIP switch settings	description		
I 2 3 4 5 6 7 8 DIP switch settings description 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 <th1< th=""> <th1< th=""> <th1< th=""> <</th1<></th1<></th1<>			
	U U U U U U U U U U U U U U U U U U U		
0 0 1 1	disturbance signal scan: utilize[default]		
	6 7 8 itch settings description 0 0 measuring mode 0 1 configuration mode on group 1 analog current output lower range value [4mA]; span 0% upper range value [20mA]; span 100% 1 1 response time 0,5s[default] response time 2s response time 5s on group 2 switching output lower threshold upper threshold 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
0 1 0 0			
	coaxial probe: 0 mm ³		
	upper dead band: medium		
	rod probe: 190 mm ³		
0 1 1 1	4 5 6 7 8 DIP switch settings description measuring mode 0 0 0 0 0 0 1 configuration mode unction group 1 analog current output lower range value [4mA]; span 0% upper range value [20mA]; span 100% 0 0 0 1 1 response time 0,5s[default] 1 0 1 1 response time 2s response time 2s 0 1 0 1 0 1 lower threshold 0 1 0 1 1		
0 1 1 0			
function group 1 analog current output 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 Iower range value [20mA]; span 0% 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 response time 0.5s[default] response time 5s function group 2 switching output 1 0			
0 1 0 1 0 0 1			

for single rod and wire rope probes with a probe length [L] >5.500mm only the top 5.500mm of the probe get scanned for disturbance signals

² for single rod and wire rope probes with a probe length [L] >3.000mm the default setting is upper dead band: long ³ determined at reference point (sealing surface of connection thread, see dimensional drawing)

Function groups 4 and 5 require the push button to be pressed and held for at least 10 seconds for the functions to be executed.

Figure 10: DIP switch settings

8.2 Configuration single rod probe or wire rope probe

For most standard applications, executing the three basic configuration steps below issufficient to achieve a fully functional sensor; providing a continuous level measurement through its analog current output.

For further details and advanced configuration of NGM, please contact your local distributor or KOBOLD directly.

8.2.1 perform disturbance signal scan

- NGM has to be mounted in its final position and the tank has to be completely empty in order to perform a disturbance signal scan
- set the DIP switch positions to the 0/1 sequence in Fig. 11on the left; start from position 8 and move towards position 1!
- LED will blink alternately green and red
- press the push button
- LED will remain green for a few seconds while the disturbance signal scan is being performed
- once the scan is completed successfully, the LED will return to blinking alternately green and red

DIP switch Position	
1 2 3 4 5 6 7 8	
DIP switch settings	description
0 0 0 1 0 1 1 1	perform disturbance signal scan

Figure 11: perform disturbance signal scan

8.2.2 lower range value [4MA]; span 0%

- fill the liquid into the tank up to the level where you want to position the lower range value [4mA]; span 0%.
- It is recommended that the lower range value stays within the measuring range [M]
- change DIP switch position 6 to off/0
- press the push button
- LED will remain green briefly while the lower range value setting is being executed
- once it has been executed successfully, the LED will return to blinking alternately green and red

			DIF Do:	o siti	sv on	vito	h	
1	2	3	4	5	6	7	8	
			DIF set	> ting	sv gs	vito	h	description
0	0	0	1	0	0	1	1	lower range value [4mA]; span 0%

Figure 12: lower range value [4mA]; span 0%

8.2.3 upper range value [20MA]; span 100%

- raise the liquid inside the tank up to the level where you want to position the upper range value [20mA]; span 100%.
- It is recommended that the upper range value stays within the measuring range [M]
- change DIP switch position 3 to on/1
- change DIP switch position 4 to off/0
- press the push button
- LED will remain green briefly while the upper range value setting is being executed
- once it has been executed successfully, the LED will return to blinking alternately green and red
- set all the DIP switch positions to 0 as indicated in Fig.14on the left; start from position 1 and move towards position 8!
- the LED will change to blinking green

DIP switch Position	
1 2 3 4 5 6 7 8	
DIP switch settings	description
0 0 1 0 0 0 1 1	upper range value [20mA]; span 100%

Figure 13: upper range value [20mA]; span 100%

Tighten the housing cover properly by turning it clockwise; make sure the cover safety chain does not tangle up. If desired, tighten the cover locking screw with an allen key size 1,5mm.

DIP switch Position	
1 2 3 4 5 6 7 8	
DIP switch settings	description
0 0 0 0 0 0 0 0	measuring mode

 \square

Figure 14: measuring mode

8.3 Configuration Coaxial probe

The coaxial probe has a very robust and reliable measurement performance in almost any application without further configuration. For basic configuration only the range values for the analogue current output have to be set.

For further details and advanced configuration of NGM, please contact your local distributor or KOBOLD directly.

8.3.1 lower range value [4MA]; span 0%

- set the DIP switch positions to the 0/1 sequence in Fig.15on the left; start from position 8 and move towards position 1!
- lower the liquid inside the tank down to the level where you want to position the lower range value [4mA]; span 0%.
 It is recommended that the lower range value stays within the measuring range [M]
- press the push button
- LED will remain green briefly while the lower range value setting is being executed
- once it has been executed successfully, the LED will return to blinking alternately green and red

description
lower range value [4mA]; span 0%

Figure 15: lower range value [4mA]; span 0%

8.3.2 upper range value [20MA]; span 100%

- raise the liquid inside the tank up to the level where you want to position the upper range value [20mA]; span 100%.
 It is recommended that the upper range value stays within the measuring range [M]
- change DIP switch position 3 to on/1
- change DIP switch position 4 to off/0.
- press the push button
- LED will remain green briefly while the upper range value setting is being executed
- once it has been executed successfully, the LED will return to blinking alternately green and red
- set all the DIP switch positions to 0 as indicated in Fig.17on the left; start from position 1 and move towards position 8!
- the LED will change to blinking green

DIP switch Position	
1 2 3 4 5 6 7 8	
DIP switch settings	description
0 0 1 0 0 0 1 1	upper range value [20mA]; span 100%

Figure 16: upper range value [20mA]; span 100%

Tighten the housing cover properly by turning it clockwise; make sure the cover safety chain does not tangle up. If desired, tighten the cover locking screw with an allen key size 1,5mm.

DIP switch Position	
1 2 3 4 5 6 7 8	
DIP switch settings	description
0 0 0 0 0 0 0 0	measuring mode

Figure 17: measuring mode

8.4 probe length and measuring range

The reference point for definition of the probe length [L] is always the shoulder of the connection thread. The probe length [L] is an important mechanical dimension which is needed to make sure the probe physically fits into the tank at the anticipated mounting location; it is not equal to the actual measuring range [M] of the sensor!

TDR level sensors have small inactive areas at top [I1] and bottom [I2] of the probe. Those are due to the presence of unavoidable signal disturbances at both ends of the probe. In these inactive areas the measurements are non-linear or have reduced accuracy. Therefore, it is not recommended to actually measure level within those inactive areas. Their length depends on the probe type and the reflectivity (i.e. dielectric constant) of the liquid to be measured.

The measuring range [M] of NGM extends between the top and bottom inactive areas of the probe; this is the area in which NGM will have the specified measurement performance. It is recommended that the maximum and minimum liquid levels to be measured in the tank are actually within the measuring range [M] of the sensor. The span between the lower range value [4mA] and the upper range value [20mA] of the analog current output is equal to 0...100% of your continuous level measurement reading. It is recommended that the span between those two range values stays within the measuring range [M].

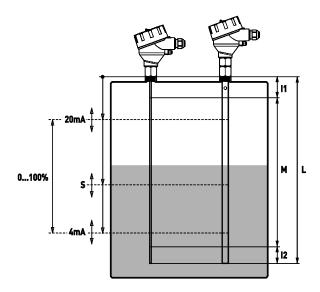


Figure 18: probe length and measuring range

8.5 disturbance signal scan

The disturbance signal scan is a powerful disturbance signal suppression feature of NGM. The sensor scans its entire probe length for any disturbance signals in the application that could potentially be misinterpreted as level readings, memorizes and suppresses them during operation; that way NGM only recognizes the actual level signals caused by the liquid to be measured.

The disturbance signal scan is intended for the single rod probe, since its signal has a wider detection radius around the rod, making it more responsive for measurement signal disturbances.

The disturbance signal scan works most efficiently on stationary interference targets like tall and narrow nozzles or close-by objects. Thus, NGM has to be mounted in its final position and the tank has to be completely empty in order to perform a disturbance signal scan; that will ensure a reliable identification of the actual disturbance signals only. In case that non-stationary interference targets close to the single rod probe, like slowly rotating agitator blades or streams of liquid being filled into the tank, cause problems with the measurement, it is recommended to use the coaxial probe.

Performing a disturbance signal scan is the prerequisite for utilizing this feature of NGM.

8.6 Guide to communicating from a PC to a NGM probe

(Configuration of device specific parameters)

8.6.1 Communication with NGM

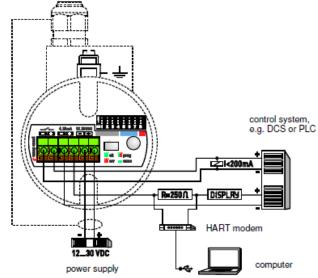
Requirements:

- PC with Microsoft Office (32 Bit and 64 Bit version)
- Excel file NGM Configuration Tool LA (HART) V176.xls since 11/2019 This file enables the customer to configure measuring parameters, analogue output, measuring length and probe/rope shortening/extending.
- Kobold-HART Modem with USB connector (Order code HARTCOMM) or any similar standard HART modems available on the market.
- Communication resistor approx. 250 Ohm
- NGM level probe
- Power supply 24VDC

Note 1!

The current Excel file for configuring the NGM sensor, as well as the drivers for the modem, can also be downloaded from our homepage www.koboldusa.com, under Product search "NGM" / Downloads.

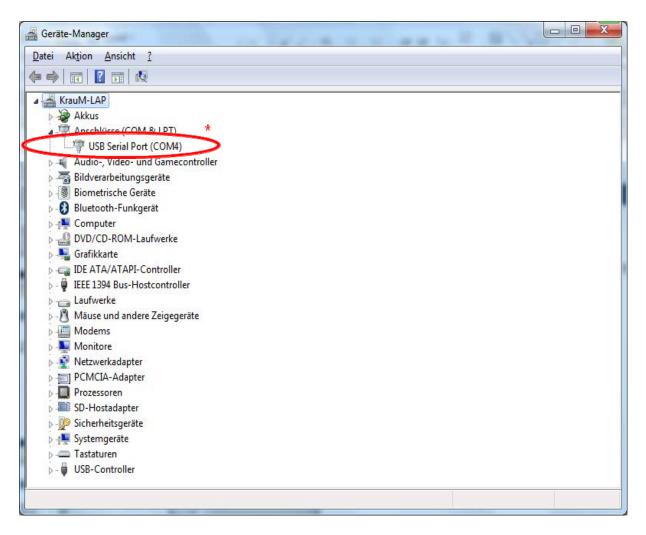
Note 2!


When using the configuration of the NGM with a HART modem, the baud rate of your USB communication "must" be reduced to 1200 bits/s! This is set to 9600Bit/s in the standard. If the parameter is not set, no communication between NGM and EXCEL programming tool can be established.

🔿 📰 🔛 📰 🖳 💺 关 😔							_
🤳 schaus-win10 🗸 🛥 Anschlüsse (COM & LPT)	Eigensch	aften von USB Serial	Port (COM7)			×
🔝 Kommunikationsanschluss (COM1)	Allgemein	Anschlusseinstellungen	Treiber	Details	Ereignisse		
	-	Bits pro Sel	kunde:	1200		~	
>) Audioeingänge und -ausgänge		Dat	enbits:	0		~	
> 🤰 Computer > 📾 Drucker		Dal	en ibita.	0		· ·	
> S Druckwarteschlangen			Parität:	Keine		~	
> @ DVD/CD-ROM-Laufwerke		Sto	ppbits:	1		~	
> Firmware							
> 🧟 Grafikkarten		Flusssteu	erung:	Keine		\sim	
> 🥃 HART Modem Driver Class							
> 🐜 Human Interface Devices		E	Erweitert	-	Wiederhers	stellen	
> 🚤 IDE ATA/ATAPI-Controller							
> 🧫 Laufwerke							
> 🥏 Mäuse und andere Zeigegeräte							
> 🤄 Monitore							
> 🧊 Netzwerkadapter							
> 🗢 Prozessoren					ок	Abbreche	

Connection:

- Connect the NGM probe to the power supply
- The LED at the NGM must start to flash green
- Connect the resistor between + and of the active 4...20mA output.
- Connect in parallel the HART modem to the resistor and plug in the USB connector to the PC



8.6.2 Connection of a NGM Probe to a PC

 Check the COM port assignment of the PC to the USB HART modem with the Device Manager

http://www.computerhope.com/issues/ch000833.htm

* In this case COM port 4 has been assigned to the HART modem

8.6.3 First Steps with the Excel Tool

- 1. Open the Excel file
- 2. Prerequisite: worksheet is active and the macros are running (*Hint: A restart of the Excel file might help to activate the Macros.*)
- 3. HOME
- 4. Enter the assigned COM port indicated at the device manager.

I Sicher	eitswarnung Einige akti	ive Inhalte wurden dea	ktiviert. Klicken	Sie hier, um v	veitere Details ar	nzuzeigen.	Inhalt aktivier	en					>	
B	32 • (*	fx								_				_
A	В	C D	E	F	G	Н	.1	J	K	L	M	N	0	
1														
2		HOME												
1 2 3 4 5 6 7 8		Configuration at	factory											
5		Conliguration at	lactory											
6		Configuration for	r local assem	bly										
7		g		-,										
8		Basic and advar	nced configura	ation and sig	nal analysis									
9														
10		PCB testing												
11		Data												
12 13 14 15 16		Data												
14														
15	Version	1,70												
16			6	🗏 Device M	anager									
17	COM port: 19	7												
18	Unit: mm / inch	mm			⊻iew <u>H</u> elp									
19				← ⇒ ∎	24 2		2 🗶 🛃							
21			- I		DS10			_						
22				🛨 🛄 Bat	teries									
23					etooth Devices									
24				🗄 夏 Cor										
17 18 19 20 21 22 23 24 25 26 27					olay adapters									
26				🕀 🖾 Hu	nan Interface De									
28				🗄 🔂 IDE	ATA/ATAPI cont	rollers								
29				🕀 🥩 Ima	iging devices									
30					boards e and other point	na devices								
31				E S Mo		ng domoos								
31 32 33 34				H BB Nel	work adapters									
33				E y Por	ts (COM & LPT)		i							
34 35				2	Bluetooth Comm MicroLink HART F	inications Port	(COM3)							
35				🕂 🐟 Pro	MILLYOLINK MART H	ruuucoi modem	(COM4)							

For the usage of the Excel tool, a click on the necessary cell activates the communication and/or parameters can be changed. For re-sending the command, click on a free cell elsewhere and move back to the required cell. The OK status has to return for a successful communication.

BASIC CONFIGURATION

Establishing a HART communication:

• Serial number obtainable by clicking on the light blue SEND button J2 in step 1 "get serial number"

Macros are running

• OK status (H2) disappears and reappears after serial number read out and shown in G2

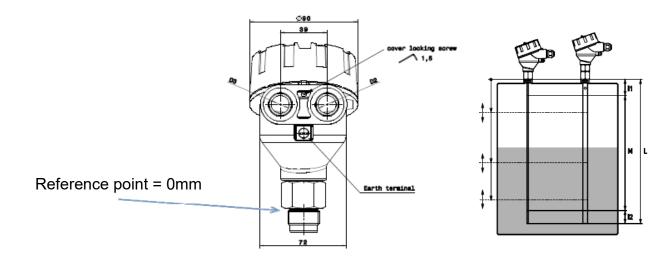
A1		• (= fx							
A	В	С	D	E	F	G	н	1	J
	step		unit of variable		max. value	variable	status	send	
		get serial number	1	0		1000	ok	SEND	
		set lower range value [4mA]	mm	-1000	L + 1000	2990	OK	SEND	
		set upper range value [20mA]	mm	-1000	L+1000	50	ok	SEND	
		get lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND	
		get upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
		set response time	0.1s	2	100	2	ok	SEND	
	7	get response time	0.15	2	100	2	ok	SEND	
		set switching output mode	1	0 = nc	1 = no	0	ok	SEND	
		get switching output mode	1	0 = nc	1 = no	0	ok	SEND	
		set lower threshold switching output	mm	0	L	600	ok	SEND	
		get lower threshold switching output	mm	0	L	600	ok	SEND	
		set upper threshold switching output	mm	0	L	600	ok	SEND	
		get upper threshold switching output	mm	0	L	600	ok	SEND	
		set upper dead band	mm	30	1400	61	ok	SEND	
		get upper dead band	mm	30	1400	61	ok	SEND	
		set amplitude threshold	ADC values	10	10000	200	ok	SEND	
		get amplitude threshold	ADC values	10	10000	200	ok	SEND	
		set disturbance signal scan status (T = top; T&B = top + bottom)	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
		get disturbance signal scan status	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
		perform disturbance signal scan	1	1	/	1	ok	SEND	
		set probe type	1		1 = single probe	1	ok	SEND	
		get probe type	1		1 = single probe	1	ok	SEND	
		set probe length [L]	mm	0	20000	3000	ok	SEND	
		get probe length [L]	mm	0	20000	3000	ok	SEND	
		set delivery configuration	1	1	1	/	ok	SEND	
		reset to delivery configuration	1	1	1	1	ok	SEND	
		get level reading	mm	0	20000,0	1999,5	ok	SEND	
		get software revision	1	1	32bit	136	ok	SEND	
		get device status	1	1	1	011 0100 0000	ok	SEND	
	30	aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe)	1	1	1	1	ok	SEND	
	31	set signal range from x1 to x2	x1 [mm]	-1000,0	20000	-1000	ok	SEND	
			x2 [mm]	0	20000	4000	20	oc.no	
						required user input			

If OK status does not reappear, check the connection or the COM port settings

Now the HART communication is established and the modification of devicespecific parameter as well as the read-out of the echo curve can be performed.

8.6.4 Upper / Lower Range Value


BASIC CONFIGURATION


• Read out actual 4...20mA settings by clicking on I6 and I7

With the command "get lower / upper range value", the actual 4...20mA values in mm are shown after the OK status disappeared and is visible again.

• Change actual 4...20mA settings by changing the values in G4 and G5 and clicking on I4 and I5 "set lower / upper range value"

• Verify changes by clicking again on I6 and I7 "get lower / upper range value"

8.6.5 Response Time

BASIC CONFIGURATION

• Read out actual response time, by clicking on I9.

Field G9 is showing the actual response time multiplied with 0,1ms.

• Change actual response time within a range of 2 ... 100 (0,2 ... 10sec) in field G8 and clicking on I8 "set response time".

Use high response times for large storage tanks with slow level movements. Use low response times for buffer and process tanks.

A1		• (* fx								_
A	В	C	D	E	F	G	н	1	J	
	step	command name	unit of variable	min united	max. value	variable	status	send		
		get serial number	1	0	32bit	1000	ok	SEND		
		set lower range value [4mA]	mm	-1000	L + 1000	2990 50	ok	SEND		
		set upper range value [20mA]	mm		L + 1000		ok	SEND		
		get lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND		
		get upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND		
		set response time	0.1s	2	100	2	ok	SERIO		
	7	get response time	0.1s	2	100	2	ok	SEND		
		set switching output mode	1	0 = nc	1 = no	0	0K	SEND		
		get switching output mode	1	0 = nc	1 = no	0	ok	SEND		
		set lower threshold switching output	mm	0	L	600	ok	SEND		
		get lower threshold switching output	mm	0	L	600	ok	SEND		
		set upper threshold switching output	mm	0	L	600	ok	SEND		
		get upper threshold switching output	mm	0	L	600	ok	SEND		
		set upper dead band	mm	30	1400	61	ok	SEND		
		get upper dead band	mm	30	1400	61	ok	SEND		
		set amplitude threshold	ADC values	10	10000	200	ok	SEND		
		get amplitude threshold	ADC values	10	10000	200	ok	SEND		
		set disturbance signal scan status (T = top; T&B = top + bottom)	1	00 = OFF	01=T; 10=T&B	01	ok	SEND		
		get disturbance signal scan status	1	00 = OFF	01=T; 10=T&B	01	ok	SEND		
		perform disturbance signal scan	1	1	1	1	ok	SEND		
		set probe type	1		1 = single probe	1	ok	SEND		
		get probe type	1		1 = single probe	1	ok	SEND		
		set probe length [L]	mm	0	20000	3000	ok	SEND		
		get probe length [L]	mm	0	20000	3000	ok	SEND		
		set delivery configuration	1	1	1	1	ok	SEND		
		reset to delivery configuration	1	1	1	1	ok	SEND		
		get level reading	mm	0	20000,0	1999,5	ok	SEND		
	28	get software revision	1	1	32bit	136	ok	SEND		
	29	get device status	1	1	1	011 0100 0000	ok	SEND		
	30	aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe)	1	1	1	1	ok	SEND		
	24	set signal range from x1 to x2	x1 [mm]	-1000,0	20000	-1000	ok	SEND		
	31	Set signal range nom x t to x2	x2 [mm]	0	20000	4000	UK	Sent		
						1				
						required user				
						input				

Verify changes by clicking again on I9 "get response time"

8.6.6 Switching Output Mode

BASIC CONFIGURATION

• Read out actual switching output mode by clicking on I11

Field G11 is showing the actual switching output mode.

-0 = nc = normally closed

-1 = no = normally open

Once the probe is powered, the switch output can be open or closed. The standard switch output mode is set to "normally closed", as it would open at a power failure for highest safety.

• Change actual switching output mode 0 or 1 in field G10 and clicking on I10 "set switching output mode"

A1		• (* f.							
A	В	C	D	E	F	G	Н	1	J
							1.000		
	step		unit of variable		max. value	variable	status	send	
		get serial number	1	0	32bit	1000	ok	SEND	
		set lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND	
		set upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
		get lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND	
		get upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
		set response time	0.1s	2	100	2	ok	SEND	
		get response time	0.1s	2	100	2	ok	SEND	
		set switching output mode	1	0 = nc	1 = no	0	ok	SEND	
		get switching output mode	1	0 = nc	1 = no	0	OK	JERS	
		set lower threshold switching output	mm	0	L	600	ok	SEND	
		get lower threshold switching output	mm	0	L	600	0h	SEND	
		set upper threshold switching output	mm	0	L	600	ok	SEND	
		get upper threshold switching output	mm	0	L	600	ok	SEND	
		set upper dead band	mm	30	1400	61	ok	SEND	
		get upper dead band	mm	30	1400	61	ok	SEND	
		set amplitude threshold	ADC values	10	10000	200	ok	SEND	
		get amplitude threshold	ADC values	10	10000	200	ok	SEND	
		set disturbance signal scan status (T = top; T&B = top + bottom)	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
		get disturbance signal scan status	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
		perform disturbance signal scan	1	1	/	1	ok	SEND	
		set probe type	1		1 = single probe		ok	SEND	
		get probe type	1		1 = single probe		ok	SEND	
		set probe length [L]	mm	0	20000	3000	ok	SEND	
		get probe length [L]	mm	0	20000	3000	ok	SEND	
		set delivery configuration	1	1	1	1	ok	SEND	
		reset to delivery configuration	1	1	1	1	ok	SEND	
		get level reading	mm	0	20000,0	1999,5	ok	SEND	
		get software revision	1	1	32bit	136	ok	SEND	
		get device status	1	1	1	011 0100 0000	ok	SEND	
	30	aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe)	1	1	1	1	ok	SEND	
	31	set signal range from x1 to x2	x1 [mm]	-1000,0	20000	-1000	ok	SEND	
	-		x2 [mm]	0	20000	4000	~		
						required user input			

Verify changes by clicking again on I11 "get switching output mode"

8.6.7 Threshold switching output

BASIC CONFIGURATION

• Read out actual lower / upper threshold switching output, by clicking on I13 and I15.

Field G13/15 indicates the actual lower / upper switching threshold.

With the help of the thresholds, a hysteresis can be programmed to avoid output switching at turbulent levels. First, the upper threshold must be passed to activate the output then the lower threshold for deactivation of the output.

• Change actual lower / upper threshold in field G12 / G14 and click on I12 / I14 "set lower / upper threshold switching output mode".

A1		• (= fx								
A	В	C	D	E	F	G	Н	1	J	
	step	command name	unit of variable	min value	max. value	variable	status	send		
		get serial number		0	32bit	1000	ok	SEND		
		set lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND		
		set upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND		
		get lower range value [20mA]		-1000	L + 1000	2990	ok	SEND		
		get lower range value [4mA] get upper range value [20mA]	mm	-1000	L + 1000	2990	ok	SEND		
		set response time	0.1s	-1000	100	2	ok	SEND		
	7	get response time	0.15	2	100	2	ok	SEND		
		get response ame set switching output mode	0.15	2 0 = nc	1= no	0	ok	SEND		
		get switching output mode	1	0 = nc	1 = no	0	ok	SEND		
		set lower threshold switching output	mm	0-110	L	600	ok	SEND		
		get lower threshold switching output	mm	0	L	600	ok	SEND		
		set upper threshold switching output	mm	0	L	600	ok	SEND		
		get upper threshold switching output	mm	0	L	600	ok	SEND		
		set upper dead band	mm	30	1400	61	ok	SEND		
		det upper dead band	mm	30	1400	61	ok	SEND		
		set amplitude threshold	ADC values	10	10000	200	ok	SEND		
		get amplitude threshold	ADC values	10	10000	200	ok	SEND		
		set disturbance signal scan status (T = top; T&B = top + bottom)	ADC Values	00 = OFF	01=T; 10=T&B	01	ok	SEND		
		get disturbance signal scan status	1	00 = OFF	01=T: 10=T&B	01	ok	SEND		
		perform disturbance signal scan	1	1	/	1	ok	SEND		
		set probe type	1		1 = single probe		ok	SEND		
		get probe type	1		1 = single probe		ok	SEND		
		set probe length [L]	mm	0	20000	3000	ok	SEND		
		aet probe length (L)	mm	0	20000	3000	ok	SEND		
		set delivery configuration	1	1	1	1	ok	SEND		
		reset to delivery configuration	í í	1	i	1	ok	SEND		
		get level reading	mm	0	20000.0	1999.5	ok	SEND		
		getreverreading det software revision	1	1	32bit	136	ok	SEND		
		get device status	1	1	1	011 0100 0000	ok	SEND		
		aguire signal data (aprox. 45sec for 1m probe and 4min for 20m probe)	1	1	1	1	ok	SEND		
			x1 [mm]	-1000.0	20000	-1000				
	31	set signal range from x1 to x2	x2 [mm]	0	20000	4000	ok	SEND		
	-		A2 (min)		20000	4000				
						required user input				

Verify changes by clicking again on I13 / I15 "get lower / upper threshold switching output"

8.6.8 Upper Dead Band


BASIC CONFIGURATION

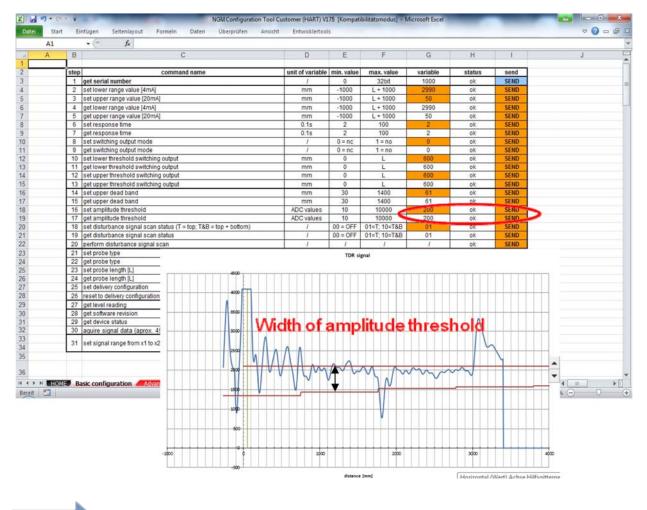
• Read out actual upper dead band, by clicking on I17.

Field G17 indicates the actual upper dead band.

With the upper dead band, noisy signals or ringing caused by the installation can be blocked. Increase the value for cutting signals left to the dead band, whose position is indicated by a green line. Any signal left to the green line will not be analyzed by the software. Entered values are in mm and are visible at the echo curve.

• Change actual upper dead band in field G16 and click on I16 "set upper dead band".

Verify changes by clicking again on I17 "get upper dead band"


8.6.9 Amplitude threshold

BASIC CONFIGURATION

• Read out actual amplitude threshold, by clicking on I19

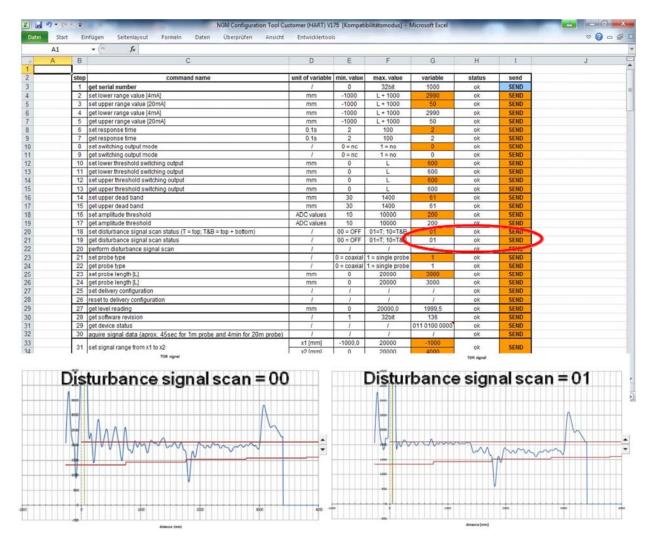
Field G19 indicates the actual amplitude threshold. Dynamic noise or ringing can be blocked if it is within the amplitude threshold band. The level reflection should be always 1/3 bigger than the width of the amplitude threshold band.

• Change actual amplitude threshold in field G18 and click on I18 "set amplitude threshold".

Verify changes by clicking again on I19 "get amplitude threshold"

8.6.10 Disturbance Signal Scan Status

BASIC CONFIGURATION


Read out actual disturbance signal scan status by clicking on I21

Field G21 indicates the actual disturbance scan signal status.

- 00=off, raw echo curve
- -01=disturbance signal active on top
- 10=disturbance signal active on top and bottom

• Change actual disturbance signal scan status in field G20 and click on I20 "set disturbance signal scan status"

• Once changing it to "10" or "01" a disturbance signal scan must be performed with I22.

Verify changes by clicking again on I21 "get disturbance signal scan status"

8.6.11 Probe Type

BASIC CONFIGURATION

• Read out actual probe type status, by clicking on I24.

Field G24 indicates the actual probe type status.

- -0= coaxial probe
- 1= single probe rod or rope

Thresholds are adapted automatically by changing this parameter.

• Change actual probe type in field G23 and click on I23 "set probe type".

A1	L		• (* fr							
A		В	C	D	E	F	G	Н	1	J
	_			and after the	and a surface					
	- 1	step		unit of variable		max. value	variable	status	send	
			get serial number	1	0	32bit	1000	ok	SEND	
	-		set lower range value [4mA]	mm	-1000	L+1000	2990	ok	SEND	
	-		set upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
	-		get lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND	
	-		get upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
	-		set response time	0.1s	2	100	2	ok	SEND	
	-		get response time	0.1s	2	100	2	ok	SEND	
	-		set switching output mode	1	0 = nc	1 = no	0	ok	SEND	
	-		get switching output mode	1	0 = nc	1 = no	0	ok	SEND	
			set lower threshold switching output	mm	0	L	600	ok	SEND	
			get lower threshold switching output	mm	0	L	600	ok	SEND	
			set upper threshold switching output	mm	0	L	600	ok	SEND	
			get upper threshold switching output	mm	0	L	600	ok	SEND	
			set upper dead band	mm	30	1400	61	ok	SEND	
			get upper dead band	mm	30	1400	61	ok	SEND	
			set amplitude threshold	ADC values	10	10000	200	ok	SEND	
			get amplitude threshold	ADC values	10	10000	200	ok	SEND	
			set disturbance signal scan status (T = top; T&B = top + bottom)	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
			get disturbance signal scan status	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
			perform disturbance signal scan	1	1	1	1	ok	SEND	
			set probe type	1		1 = single pr		ok	SEND	
			get probe type	1		1 = single pi	1	ok	SEND	
			set probe length [L]	mm	0	20000	3000	UN	SEND	
			get probe length [L]	mm	0	20000	3000	ok	SEND	
			set delivery configuration	1	1	1	1	ok	SEND	
			reset to delivery configuration	1	1	1	1	ok	SEND	
			get level reading	mm	0	20000,0	1999,5	ok	SEND	
			get software revision	1	1	32bit	136	ok	SEND	
			get device status	1	1	1	011 0100 0000	ok	SEND	
	_	30	aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe)	1	1	1	1	ok	SEND	
		24	set signal range from x1 to x2	xt [mm]	-1000,0	20000	-1000	ok	SEND	
		31	est erginer range nom A 1 to Az	x2 [mm]	0	20000	4000	- UK	SEILD	
					()				-	
							required user			
							input			

Verify changes by clicking again on I24 "get probe type"

8.6.12 Probe Length

BASIC CONFIGURATION

• Read out actual probe length, by clicking on I26.

Field G26 indicates the actual probe length in mm.

• Change actual probe length in field G25 and click on I25 "set probe length".

A1		• (* fr							
А	В	C	D	E	F	G	Н	1	J
	ste		unit of variable		max. value	variable	status	send	
	1		1	0	32bit	1000	ok	SEND	
		set lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND	
	_	set upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
	4		mm	-1000	L + 1000	2990	ok	SEND	
		get upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
		set response time	0.1s	2	100	2	ok	SEND	
		get response time	0.1s	2	100	2	ok	SEND	
	8	set switching output mode	1	0 = nc	1 = no	0	ok	SEND	
	9	get switching output mode	1	0 = nc	1 = no	0	ok	SEND	
		set lower threshold switching output	mm	0	L	600	ok	SEND	
		get lower threshold switching output	mm	0	L	600	ok	SEND	
		set upper threshold switching output	mm	0	L	600	ok	SEND	
		get upper threshold switching output	mm	0	L	600	ok	SEND	
		set upper dead band	mm	30	1400	61	ok	SEND	
		get upper dead band	mm	30	1400	61	ok	SEND	
		set amplitude threshold	ADC values	10	10000	200	ok	SEND	
		get amplitude threshold	ADC values	10	10000	200	ok	SEND	
		set disturbance signal scan status (T = top; T&B = top + bottom)	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
		get disturbance signal scan status	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
		perform disturbance signal scan	1	1	1	1	ok	SEND	
		set probe type	1		1 = single probe		ok	SEND	
		get probe type	1		1 = single probe	1		SEND	
		set probe length [L]	mm	0	20000	3000	ok	SEND	
		get probe length [L]	mm	0	20000	3000	ok	SEND	<u> </u>
		set delivery configuration	1	1	1	1	-	SEND	
		reset to delivery configuration	1	1.	1	1	ok	SEND	
		get level reading	mm	0	20000,0	1999,5	ok	SEND	
		get software revision	/	1	32bit	136	ok	SEND	
		get device status	1	1	1	011 0100 0000	ok	SEND	
	30	aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe		1	1	/	ok	SEND	
	31	set signal range from x1 to x2	x1 (mm)	-1000,0	20000	-1000	ok	SEND	
			x2 [mm]	0	20000	4000	21226		
						required user			
						input			

Verify changes by clicking again on I26 "get probe length"

8.6.13 Set Delivery Configuration

BASIC CONFIGURATION

• Set actual parameters as delivery configuration by clicking on I27

Former delivery configuration parameters will be overwritten! No reset to factory conditions is possible anymore.

A1		• (* fr								
А	В	С	D	E	F	G	Н	1	J	j
		5.4								
	ste		unit of variable	-	max. value	variable	status	send		
	1	get serial number	1	0	32bit	1000	ok	SEND		
		set lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND		
	3	set upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND		
	4	get lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND		
	5	get upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND		
	6	set response time	0.1s	2	100	2	ok	SEND		
	7	get response time	0.15	2	100	2	ok	SEND		
	8	set switching output mode	1	0 = nc	1 = no	0	ok	SEND		
	9	get switching output mode	1	0 = nc	1 = no	0	ok	SEND		
	10		mm	0	L	600	ok	SEND		
		get lower threshold switching output	mm	0	L	600	ok	SEND		
	12		mm	0	L	600	ok	SEND		
	13		mm	0	L	600	ok	SEND		
	14	set upper dead band	mm	30	1400	61	ok	SEND		
	15		mm	30	1400	61	ök	SEND		
	16	set amplitude threshold	ADC values	10	10000	200	ok	SEND		
	17		ADC values	10	10000	200	ok	SEND		
	18		1	00 = OFF	01=T; 10=T&B	01	ok	SEND		
	19	get disturbance signal scan status	1	00 = OFF	01=T; 10=T&B	01	ok	SEND		
	20	perform disturbance signal scan	1	1	1	1	ok	SEND		
	21	set probe type	1	0 = coaxial	1 = single probe	1	ok	SEND		
	22		1	0 = coaxial	1 = single probe	1	ok.	SEND		
	23	set probe length [L]	mm	0	20000	3000	ok	SEND		
	24	get probe length [L]	mm	0	20000	3000	ok	SEND		
	25	set delivery configuration	1	1	1	/	VII	SEND		
	26	reset to delivery configuration	1	1	1	1	ok	SEND		
	27	get level reading	mm	0	20000,0	1999,5	ok	SEND		
	28	get software revision	1	1	32bit	136	ok	SEND		
	29	get device status	1	1	1	011 0100 0000	ok	SEND		
	30	aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe)	1	1	1	1	ok	SEND		
			x1 [mm]	-1000,0	20000	-1000	196			
	31	set signal range from x1 to x2	x2 [mm]	0	20000	4000	ok	SEND		
						required user input				

8.6.14 Reset to Delivery Configuration

BASIC CONFIGURATION

Reset unit back to delivery configuration, by clicking on I28.

4...20mA, response time, switching mode and thresholds, upper dead band, amplitude threshold, disturbance scan, probe type, and probe length will be set back to delivery configuration.

A1		• (= f _x							
A	E	C	D	E	F	G	н	1	J
	1							1	
	ste		unit of variable		max. value	variable	status	send	
		get serial number	1	0	32bit	1000	ok	SEND	
		set lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND	
		set upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
		get lower range value [4mA]	mm	-1000	L+1000	2990	ok	SEND	
	_	get upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
	6		0.1s	2	100	2	ok	SEND	
	7		0.1s	2	100	2	ok	SEND	
	8		1	0 = nc	1 = no	0	ok	SEND	
		get switching output mode	1	0 = nc	1 = no	0	ok	SEND	
		set lower threshold switching output	mm	0	L	600	ok	SEND	
		get lower threshold switching output	mm	0	L	600	ok	SEND	
		set upper threshold switching output	mm	0	L	600	ok	SEND	
		get upper threshold switching output	mm	0	L	600	ok	SEND	
		set upper dead band	mm	30	1400	61	ok	SEND	
		get upper dead band	mm	30	1400	61	ok	SEND	
		set amplitude threshold	ADC values	10	10000	200	ok	SEND	
		get amplitude threshold	ADC values	10	10000	200	ok	SEND	
		set disturbance signal scan status (T = top; T&B = top + bottom)	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
		get disturbance signal scan status	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
		perform disturbance signal scan	1	1	1	1	ok	SEND	
		set probe type	/		1 = single probe	1	ok	SEND	
		get probe type	1		1 = single probe	1	ok	SEND	
		set probe length [L]	mm	0	20000	3000	ok	SEND	
		get probe length [L]	mm	0	20000	3000	ok	SEND	
		set delivery configuration	1	1	/ <	1	ok	the second se	>
		reset to delivery configuration	1	1	1	1	0K	SEND	
		get level reading	mm	0	20000,0	1999,5	ok	SEND	
		get software revision	1	1	32bit	136	ok	SEND	
		get device status	1	1		011 0100 0000	ok	SEND	
	3	aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe)		1	1	1	ok	SEND	
	3	set signal range from x1 to x2	x1 [mm]	-1000,0	20000	-1000	ok	SEND	
	Ľ	ou orginal range norman to ac	x2 [mm]	0	20000	4000		J.III	
						required user input			

8.6.15 Level Reading

BASIC CONFIGURATION

• Get actual level reading, by clicking on I29.

If you do not measure the current output in series with a Multimeter, it is recommended to read out the level 3 - 5 times to recognize potential current fluctuations.

If a fluctuating current can be observed, the amplitude threshold or dead band needs to be adjusted.

A1			• (* fr								
A		в	C	D	E	F	G	Н	1	J	
	_,										
		step	command name	unit of variable		max. value	variable	status	send		
			get serial number	1	0	32bit	1000	ok	SEND		
			set lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND		
			set upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND		
			get lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND		
			get upper range value (20mA)	mm	-1000	L + 1000	50	ok	SEND		
			set response time	0.1s	2	100	2	ok	SEND		
			get response time	0.1s	2	100	2	ok	SEND		
			set switching output mode	1	0 = nc	1 = no	0	ok	SEND		
			get switching output mode	1	0 = nc	1 = no	0	ok	SEND		
	-		set lower threshold switching output	mm	0	L	600	ok	SEND		
			get lower threshold switching output	mm	0	L	600	ok	SEND		
			set upper threshold switching output	mm	0	L	600	ok	SEND		
			get upper threshold switching output	mm	0	L	600	ok	SEND		
			set upper dead band	mm	30	1400	61	ok	SEND		
			get upper dead band	mm	30	1400	61	ok	SEND		
			set amplitude threshold	ADC values	10	10000	200	ok	SEND		
			get amplitude threshold	ADC values	10	10000	200	ok	SEND		
			set disturbance signal scan status (T = top; T&B = top + bottom)	1	00 = OFF	01=T; 10=T&B	01	ok	SEND		
			get disturbance signal scan status	1	00 = OFF	01=T; 10=T&B	01	ok	SEND		
		20	perform disturbance signal scan	1	1	1	1	ok	SEND		
	- F	21	set probe type	1	0 = coaxial	1 = single probe	1	ok	SEND		
			get probe type	1	0 = coaxial	1 = single probe	1	ok	SEND		
			set probe length [L]	mm	0	20000	3000	ok	SEND		
			get probe length [L]	mm	0	20000	3000	ok	SEND		
		25	set delivery configuration	1	1	1	1	ok	SEND		
		26	reset to delivery configuration	1	1	1	1	ok	SEND		
	- [27	get level reading	mm	0	20000.0	1999.5	ok	SEND	1 C	
		28	get software revision	1	1	32bit	135	UK	SEND		
		29	get device status	1	1	1	011 0100 0000	ok	SEND		
		30	aguire signal data (aprox, 45sec for 1m probe and 4min for 20m probe)	1	1	1	1	ok	SEND		
				x1 [mm]	-1000.0	20000	-1000	1224			
		31	set signal range from x1 to x2	x2 [mm]	0	20000	4000	ok	SEND		
		_									
							required user				
							input				

8.6.16 Software Revision

BASIC CONFIGURATION

• Get actual software revision, by clicking on I30.

As of April 30, 2013, the actual software revision is V150. For an upgrade please contact KOBOLD.

A1	L		• (** fx							
A		В	C	D	E	F	G	Н	ો	J
_	-	step	command name	unit of variable	min, value	max. value	variable	status	send	
	- 1		get serial number	1	0	32bit	1000	ok	SEND	
	- 1		set lower rance value [4mA]	mm	-1000	L + 1000	2990	ok	SEND	
	- 1		set upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
	- 1		get lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND	
	- 1		get upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
	-+		set response time	0.1s	2	100	2	ok	SEND	
	- 1		get response time	0.1s	2	100	2	ok	SEND	
	- 1		set switching output mode	1	0 = nc	1 = no	0	ok	SEND	
	- 1		get switching output mode	1	0 = nc	1 = no	0	ok	SEND	
	- 1		set lower threshold switching output	mm	0	L	600	ok	SEND	
	- 1		get lower threshold switching output	mm	0	L	600	ok	SEND	
	- 1		set upper threshold switching output	mm	0	L	600	ok	SEND	
	- 1		get upper threshold switching output	mm	0	L	600	ok	SEND	
	- 1		set upper dead band	mm	30	1400	61	ok	SEND	
	- 1		get upper dead band	mm	30	1400	61	ok	SEND	
	- 1		set amplitude threshold	ADC values	10	10000	200	ok	SEND	
	- 1		get amplitude threshold	ADC values	10	10000	200	ok	SEND	
	- 1		set disturbance signal scan status (T = top; T&B = top + bottom)	1	00 = OFF	01=T: 10=T&B	01	ok	SEND	
	- 1		get disturbance signal scan status	1	00 = OFF	01=T: 10=T&B	01	ok	SEND	
	- 1		perform disturbance signal scan	1	1	1	1	ok	SEND	
	- 1		set probe type	1	0 = coaxial	1 = single probe	1	ok	SEND	
	- 1		get probe type	1		1 = single probe		ok	SEND	
	- 1		set probe length [L]	mm	0	20000	3000	ok	SEND	
	- 1		get probe length [L]	mm	0	20000	3000	ok	SEND	
	- 1		set delivery configuration	1	1	1	1	ok	SEND	
	- 1		reset to delivery configuration	1	1	1	1	ok	SEND	
	- 1		get level reading	mm	0	20000.0	1999.5	ok	SEND	
	- 1		get software revision	1	1	32bit	136	ok	SEND	-
	- 1		get device status	1	I.	1	011 0100 00001	UK.	SENU	
	- 1		aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe)	1	1	1	1	ok	SEND	
	- 1			x1 [mm]	-1000.0	20000	-1000			
		31	set signal range from x1 to x2	x2 [mm]	0	20000	4000	ok	SEND	
		-		ive found		20000	4000		_	
							required user			
							input			

8.6.17 Device Status

BASIC CONFIGURATION

• Get actual devise status, by clicking on I31.

Important probe status information can be communicated.

Click on the small red upper right corner for more details.

A1		• (* fx							
A	B	C	D	E	F	G	Н		J
	ster	command name	unit of variable	min value	max. value	variable	status	send	1
	1	get serial number	unit of variable	0	32bit	1000	ok	SEND	
		set lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND	-
		set upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
	4	get lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND	
	5	get over range value [4104] get upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND	
	6	set response time	0.1s	2	100	2	ok	SEND	
	7	get response time	0.15	2	100	2	ok	SEND	
	8	set switching output mode	1	0 = nc	1 = no	0	ok	SEND	
	9	get switching output mode	1	0 = nc	1 = no	0	ok	SEND	
	10		mm	0	L	600	ok	SEND	1
		get lower threshold switching output	mm	0	L	600	ok	SEND	
		set upper threshold switching output	mm	0	L	600	ok	SEND	
		get upper threshold switching output	mm	0	L	600	ok	SEND	
		set upper dead band	mm	30	1400	61	ok	SEND	
	15	get upper dead band	mm	30	1400	61	ok	SEND	
	16	set amplitude threshold	ADC values	10	10000	200	ok	SEND	
	17	get amplitude threshold	ADC values	10	10000	200	ok	SEND	
	18	set disturbance signal scan status (T = top; T&B = top + bottom)	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
	19	get disturbance signal scan status	1	00 = OFF	01=T; 10=T&B	01	ok	SEND	
	20	perform disturbance signal scan	1	1	1	1	ok	SEND	
		set probe type	1	0 = coaxial	1 = single probe	1	ok	SEND	
	22	get probe type	1	0 = coaxial	1 = single probe	1	ok	SEND	
	23	set probe length [L]	mm	0	20000	3000	ok	SEND	
		get probe length [L]	mm	0	20000	3000	ok	SEND	
	25	set delivery configuration	1	1	1	1	ok	SEND	
	26	reset to delivery configuration	1	1	1	1	ok	SEND	
	27	get level reading	mm	0	20000,0	1999,5	ok	SEND	
	28	get software revision	1	1	32bit	136	ok	SEND	
		get device status	1	1	10	011 0100 0000	ok	SEND	
	30	aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe)	1	1	1		UK	SEND	
		ant signal same from ut to vo	x1 [mm]	-1000,0	20000	-1000	ak	SEND	
	31	set signal range from x1 to x2	x2 [mm]	0	20000	4000	ok	SEND	
				2					
						required user			
						input			

8.6.18 Signal Data – Echo Curve

BASIC CONFIGURATION

• Acquire actual signal data or also called echo curve by clicking on I32

Once the OK status in field H32 does not disappear anymore, the echo curve can be visualized by clicking on worksheet SIGNAL.

Reading out the echo curve from the electronics can take several seconds, as all data must be communicated via the serial HART protocol to the PC.

A1		• (* fx								
A	B	C	D	E	F	G	Н	1	J	
	ste	command name	unit of variable	min value	max. value	variable	status	send		
	1		/	0	32bit	1000	ok	SEND		
		set lower range value [4mA]	mm	-1000	L+1000	2990	ok	SEND		
		set upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND		
	4		mm	-1000	L + 1000	2990	ok	SEND		
		get lower range value [20mA]	mm	-1000	L + 1000	50	ok	SEND		
	6	set response time	0.1s	2	100	2	ok	SEND		
	7	get response time	0.15	2	100	2	ok	SEND		
	8	set switching output mode	0.15	0 = nc	1 = no	0	ok.	SEND		
	9	get switching output mode	1	0 = nc	1 = no	0	ok	SEND		
		set lower threshold switching output	mm	0	L	600	ok	SEND		
		get lower threshold switching output	mm	0	L	600	ok	SEND		
		set upper threshold switching output	mm	0	L	600	ok	SEND		
		get upper threshold switching output	mm	0	L	600	ok	SEND		
		set upper dead band	mm	30	1400	61	ok	SEND		
		oet upper dead band	mm	30	1400	61	ok	SEND		
		set amplitude threshold	ADC values	10	10000	200	ok	SEND		
		get amplitude threshold	ADC values	10	10000	200	ok	SEND		
		set disturbance signal scan status (T = top; T&B = top + bottom)	ADO Values	00 = OFF	01=T: 10=T&B	01	ok	SEND		
		get disturbance signal scan status (1 = 10p, 10b = 10p + boltom)	1	00 = OFF	01=T; 10=T&B	01	ok	SEND		
		perform disturbance signal scan	1	1	/	1	ok	SEND		
		set probe type	1	0 = coavial	1 = single probe		ok	SEND		
		get probe type	1		1 = single probe		ok	SEND		
		set probe length [L]	mm	0 = coasiai	20000	3000	ok	SEND		
		get probe length [L]	mm	0	20000	3000	ok	SEND		
		set delivery configuration	1	1	1	1	ok	SEND		
		reset to delivery configuration	1	i	,	1	ok	SEND		
		get level reading	mm	0	20000.0	1999,5	ok	SEND		
		get software revision	1	1	32bit	136	ok	SEND		
		get device status	1	;	1	011 0100 0000	ok	SEND		
		aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe	1	1	1	01101000000	ok	SEND		
			x1 [mm]	-1000.0	20000	-1000	_		-	
	3	set signal range from x1 to x2	x2 [mm]	0	20000	4000	ok	SEND		
	-		X2 [mm]	0	20000	4000				
						required user				
						input				

8.6.19 Signal Range

BASIC CONFIGURATION

• Set signal range, by entering values in field G33/34 and clicking on I33/34

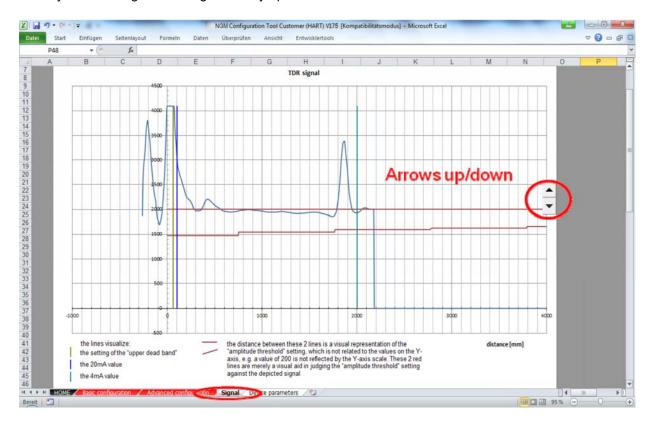
Depending on the probe length, the range within the echo curve in worksheet SIGNAL can be adapted.

A negative X1 range of -1000 is always recommended and standard. With this the microwave generation and coupling can be verified.

A1		• (* fr								
Α	1	C	D	E	F	G	н	1	J	
		amaa haamaa	unit of variable	min unhun	max ushes	ussiable	atatus			
		command name			max. value	variable	status	send		
			1	0	32bit	1000	ok	SEND		
		set lower range value [4mA]	mm	-1000	L+1000	2990	ok	SEND		
	-		mm	-1000	L + 1000	50	ok	SEND		
		get lower range value [4mA]	mm	-1000	L + 1000	2990	ok	SEND		
		get upper range value [20mA]	mm	-1000	L + 1000	50	ok	SEND		
			0.1s	2	100	2	ok	SEND		
	- 14		0.1s	2	100	2	ok	SEND		
		set switching output mode	1	0 = nc	1 = no	0	ok	SEND		
			1	0 = nc	1 = no	0	ok	SEND		
		0 set lower threshold switching output	mm	0	L	600 600	ok	SEND		
		1 get lower threshold switching output	mm	· · ·			ok			
		2 set upper threshold switching output	mm	0	L	600	ok	SEND		
		3 get upper threshold switching output	mm		L	600	ok	SEND		
		4 set upper dead band	mm	30	1400	61	ok	SEND		
		5 get upper dead band	mm	30	1400	61	ok	SEND		
		6 set amplitude threshold	ADC values	10	10000	200	ok	SEND		
		7 get amplitude threshold	ADC values	10	10000	200	ok	SEND		
		8 set disturbance signal scan status (T = top; T&B = top + bottom)	1	00 = OFF	01=T; 10=T&B	01	ok	SEND		
		9 get disturbance signal scan status	1	00 = OFF	01=T; 10=T&B	01	ok	SEND		
		D perform disturbance signal scan	1	/	1	1	ok	SEND		
		1 set probe type	1		1 = single probe	1	ok	SEND		
		2 get probe type	1		1 = single probe	1	ok	SEND		
		3 set probe length [L]	mm	0	20000	3000	ok	SEND		
		4 get probe length [L]	mm	0	20000	3000	ok	SEND		
		5 set delivery configuration	1	1	1	/	ok	SEND		
		6 reset to delivery configuration	1	1	1	1	ok	SEND		
		7 get level reading	mm	0	20000,0	1999,5	ok	SEND		
		8 get software revision	1	1	32bit	136	ok	SEND		
		9 get device status	1	1		011 0100 0000	ok	SEND		
	3	aquire signal data (aprox. 45sec for 1m probe and 4min for 20m probe)	1	1	1	/	ok	SEND		
		1 set signal range from x1 to x2	x1 [mm]	-1000,0	20000	-1000	ok	SEND	`	
			x2 [mm]	0	20000	4000	wh.	SEND		
						required user				
						input				

8.6.20 Signal

SIGNAL


• Visualization of the actual echo curve, where the level calculation is based on.

• The NGM gets 70 echo curves every second for calculating the level.

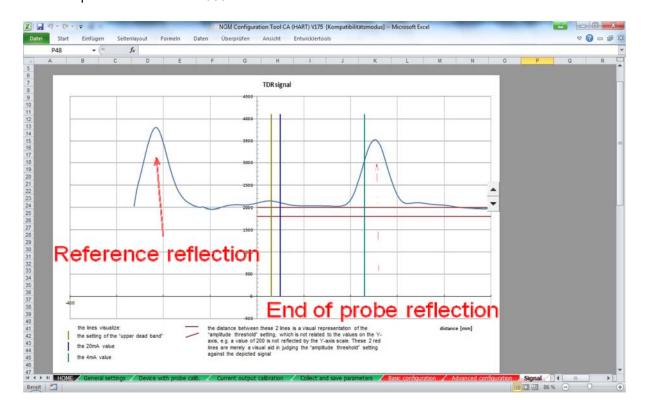
The most important parameters (4...20mA; dead band and amplitude threshold) are visualized.

With the arrows up/down, the amplitude threshold can be positioned properly on the average zero line of the echo curve as a means to evaluate the correct value.

x-axis: length in mm
 y-axis : voltage according to factory-specific scales

8.6.21 More Parameters...

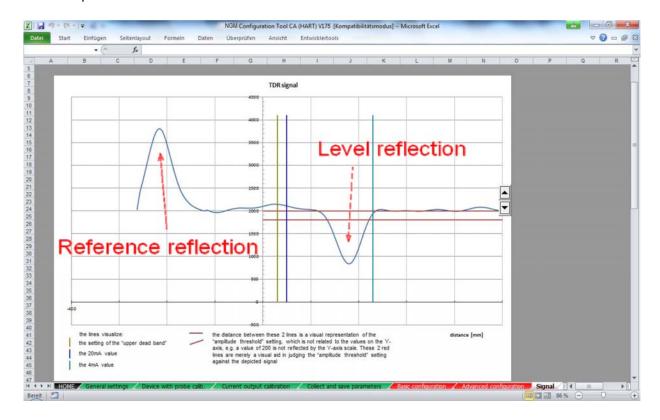
ADVANCED CONFIGURATION


• Parameters within the worksheet ADVANCED CONFIGURATION are only recommended to change by experts.

10 CET_4MA_LEVEL (upper range value (4mA)) mm -1000 L + 1000 2990 ok SEND analog current output 11 GET_20MA_LEVEL (upper range value (20mA)) mm -1000 L + 1000 50 ok SEND analog current output 01x0 21 ok SEND analog current output 01x0 <	C47 • fr MEASURE_PROBE_LENGTH (boot of	device after ru	n)						
If Det SERUE I D 32:bit 1000 obs SERUE In case other commands do not reply 2 SET_LUKER, CURRENT_CALIB 0.00 tmA 4000 8000 6000 60. SEND analog current output 3 SET_UMPER_CURRENT_CALIB 0.00 tmA 4000 8000 60. SEND analog current output 4 GET_UMPER_CURRENT_CALIB 0.00 tmA 16000 20000 18000 ok SEND analog current output 5 GO_UMPER_CURRENT_CALIB 0.00 tmA 1000 20000 18000 analog current output 6 GO_UNPER_CALIBRATION_POINT 1 1 1 1 1 1 1 1 1 1 1 1 0.00 tmA 10000 50. SEND analog current output 0001001 5 SET_2GUR_ENT_ANA_ENE Use to the toother analog current output 0.00 tmA 1000 2.00 SEND analog current output 0.00 tmA 1000 2.00 SEND anal	C C	D	E	F	G	н	1	J	К
I GET_SERUL_NUMBER / 0 32:01 Over SERU In case other commands do not reply SET_LUKER_CURRENT_CALIB 0.001mA 4000 8000 6500 ok SEND analog current output GET_LOWER_CURRENT_CALIB 0.001mA 16000 20000 18000 ok SEND analog current output GET_UMPER_CURRENT_CALIB 0.001mA 16000 20000 18000 ok SEND analog current output GOLOFER_CURRENT_CALIB 0.001mA 16000 20000 0.0 SEND analog current output GOLOFER_CALIBERATION_POINT I I I I I 0.0 SEND analog current output 0001001 SET_AUAL_EVEL (Diver range value [AmA]) mm -1000 L + 1000 500 SEND analog current output 0001001 GET_CURRENT_CALIB 0.01mA 0.00 2.000 0.000 SEND analog current output 0.00101 SET_CURRENT_CALIB 0.01mA 1.0 L + 1000 500 SEND <td< th=""><th>en command name</th><th>unit of variable</th><th>min value</th><th>max value</th><th>variable</th><th>status</th><th>sond</th><th>romarks</th><th>DIP function</th></td<>	en command name	unit of variable	min value	max value	variable	status	sond	romarks	DIP function
SET_LOVER_CURRENT_CALIB 0.001mA 4000 8000 ok SEM enslop current output IGET_LOVER_CURRENT_CALIB 0.001mA 14000 8000 ok SEM analog current output IGET_LOVER_CURRENT_CALIB 0.001mA 4000 8000 ok SEM analog current output IGET_LOVER_CURRENT_CALIB 0.01mA 1600 20000 16000 ok SEM analog current output IGO_LOVER_CALIBRATION_POINT I		/							Cit infector
ISET_UPPER_CURRENT_CALIB 0.01mA 18000 2000 18000 ok SEN0 analog current output IGET_UPPER_CURRENT_CALIB 0.01mA 1000 20000 18000 ok SEN0 analog current output IGET_UPPER_CURRENT_CALIB 0.01mA 1000 2000 18000 ok SEN0 analog current output IGU_COVER_CURRENT_CALIB 0.01mA 1 </td <td></td> <td>0.001mA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0.001mA							
GET_LOWER_CURRENT_CALB 0.001mA 4000 8000 ok SEND analog current output IGD_LOWER_CURRENT_CALB 0.001mA 1600 20000 ok SEND analog current output IGD_LOWER_CALBRATION_POINT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII									
IGET_UPPER_CURRENT_CALIB 0.001mA 18000 28100 analog current output IGO_LOWER_CALIBRATION_POINT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII									-
ICO_LOWER_CALIBRATION_POINT I<									
Image: CALIBRATION_POINT / <td></td> <td>1</td> <td>10000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1	10000						
SET_MAL_EVEL (over range value (4mA)) mm -1000 L + 1000 2990 ok SEHD analog current output 0011 001 IGET_MAL_EVEL (over range value (2mA)) mm -1000 L + 1000 50 ok SEHD analog current output 0010 001 IGET_ZOMA_LEVEL (over range value (2mA)) mm -1000 L + 1000 50 ok SEHD analog current output 0010 001 IGET_ZOMA_LEVEL (over range value (2mA)) mm -1000 L + 1000 50 ok SEHD analog current output 01x 0011 IGET_ZOMA_LEVEL (over range value (2mA)) mm -1000 L + 1000 50 ok SEHD analog current output 01x 0011 IGET_SWITCH_DOWPASS_TIME (response time) 0.1s 2 100 2 ok SEHD analog current output 01x 0011 IGET_SWITCH_MODE (switching output mode) / 0 = nc 1 = no 0 ok SEHD switching output 010x 0101 IGET_SWITCH_HODE (switching output mode) / 0 = nc 1 = no 0 <td></td> <td>1</td> <td>í í</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>		1	í í	1	1				
SET_20MA_LEVEL (upper range value [20mA]) mm -1000 L + 1000 50 ok SER0 analog current output 0010 001 : I GET_2MA_LEVEL (opper range value [20mA]) mm -1000 L + 1000 290 ok SER0 analog current output 01x 001 1 I GET_2MA_LEVEL (opper range value [20mA]) mm -1000 L + 1000 50 ok SER0 analog current output 01x 001 1 I GET_2MAPASS_TIME (response time) 0.1s 2 100 2 ok SER0 analog current output 01x 010 1 I DS_SET_CURRENT 0.001mA 0 20000 ok SER0 analog current output 01x 010 1 I DS_SET_SUTCH_MODE (switching output mode) / 0 = nc 1 = no 0 ok SER0 switching output 010 010 10 I GET_SWITCH_MODE (switching output mode) / 0 = nc 1 = no 0 ok SER0 switching output 0010 010 I GET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok		mm	-1000	1 + 1000					00010011
D GET_4MA_LEVEL (over range value (4mA)) mm -1000 L + 1000 2990 ok SERU analog current output I GET_20MA_LEVEL (upper range value (20mA)) mm -1000 L + 1000 50 ok SERU analog current output 01x 001 14 I GET_LOWPASS_TIME (response time) 0.1s 2 100 2 ok SERU analog current output 01x 001 14 I GET_SWITCH_MODE (switching output mode) 0.1s 2 100 2 ok SERU analog current output 01x 010 1 I GET_SWITCH_MODE (switching output mode) / 0 = nc 1 = no 0 ok SERU switching output 010x 010 1 I GET_SWITCH_THRESHOLD (lower threshold switching output) mm 0 L 6600 ok SERU switching output 00110 010 1 I GET_SWITCH_THRESHOLD (lower threshold switching output) mm 0 L 600 ok SERU switching output 00110 010 1 I GET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 60	SET 20MA LEVEL (upper range value (20mAl)								0010 001 1
I GET_20MA_LEVEL (upper trange value [20mA]) mm -1000 L + 1000 50 ok SERD analog current output 0.1 x 001 2 SET_LOWPASS_TIME (response time) 0.1 s 2 100 2 ok SERD analog current output 0.1 x 001 1 DS_SET_CURRENT 0.01 mA 0 20000 ok SERD analog current output 0.01 x 001 1 DS_SET_CURRENT 0.01 mA 0 20000 ok SERD analog current output 0.01 x 001 1 DS_SET_CURRENT 0.00 mA 0 20000 ok SERD switching output 0.01 x 001 1 GET_SWITCH_MODE (switching output mode) / 0 = nc 1 = no 0 ok SERD switching output 0.010 010 1 GET_SWITCH_HRESHOLD (lower threshold switching output mm 0 L 600 ok SERD switching output 0.011 010 1 GET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SERD switching output 0.011 010 <td></td> <td>mm</td> <td>-1000</td> <td>L + 1000</td> <td></td> <td>ok</td> <td></td> <td></td> <td></td>		mm	-1000	L + 1000		ok			
2 SET_LOWPASS_TIME (response time) 0.1s 2 100 2 ok SERD analog current output 01xx001 I GET_LOWPASS_TIME (response time) 0.1s 2 100 2 ok SERD analog current output 01xx001 I GET_LOWPASS_TIME (response time) 0.1s 2 100 2 ok SERD analog current output 01xx001 I GET_SWITCH_MODE (switching output mode) / 0 = nc 1 = no 0 ok SERD switching output 010x010 I GET_SWITCH_MODE (switching output mode) / 0 = nc 1 = no 0 ok SERD switching output 010x010 I GET_SWITCH_THRESHOLD (lower threshold switching output) mm 0 L 600 ok SERD switching output 0011010 I GET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SERD switching output 0011010 I GET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
I GET_LOWPASS_TIME (response time) 0.1s 2 100 2 ok SERU analog current output IDS_SET_CURRENT 0.001mA 0 20000 ok SERU analog current output IDS_SET_CURRENT 0.001mA 0 =nc 1 = no 0 ok SERU analog current output 010x 010 1 IGET_SWITCH_MODE (switching output mode) / 0 = nc 1 = no 0 ok SERU switching output 010x 010 1 IGET_SWITCH_IMCES(lower threshold switching output) mm 0 L 600 ok SERU switching output 0010 010 10 IGET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SERU switching output 0011 010 IGET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SERU switching output 0011 010 IGET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SERU switching outpu		0.1s	2			ok	SEND		01xx 001 1
DS_SET_CURRENT 0.001mA 0 20000 20000 0k SERD analog current output ISET_SWITCH_MODE (switching output mode) / 0 = nc 1 = no 0 0k SERD switching output 010x 010 1 ISET_SWITCH_MODE (switching output mode) / 0 = nc 1 = no 0 0k SERD switching output 010x 010 1 ISET_SWITCH_THRESHOLD (lower threshold switching output) mm 0 L 600 0k SERD switching output 0010 010 0 ISET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 0k SERD switching output 0011 01 0 ISET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 0k SERD switching output 0011 01 0 ISET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 0k SERD switching output 011 01 0 ISET_SWITCH_DEACTIVATION_LEVEL (upper threshold) mm 0 1 1									
1 0 = nc 1 = no 0 ok SERD switching output 010x010 1 1 0 = nc 1 = no 0 ok SERD switching output 010x010 1 1 0 = nc 1 = no 0 ok SERD switching output 0010 010 1 1 0 = nc 1 = no 0 ok SERD switching output 0010 010 1 1 0 = nc 1 = no 0 ok SERD switching output 0010 010 1 1 0 = nc 1 = no 0 ok SERD switching output 0010 010 1 1 0 = nc 1 0 L 600 ok SERD switching output 0011 010 1 1 0 = SET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SERD switching output 0011 010 1 1 0 = STATT (upper dead band) index 50 300 70 ok SERD switching output <									
I GET_SWITCH_MODE (switching output mode) I 0 = nc 1 = no 0 0k SERID switching output 0010 010 I SET_SWITCH_THRESHOLD (lower threshold switching output) mm 0 L 600 0k SERID switching output 0010 010 I SET_SWITCH_THRESHOLD (lower threshold switching output) mm 0 L 600 0k SERID switching output 0011 010 I SET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 0k SERID switching output 0011 010 I SET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output nmm 0 L 600 ok SERID switching output 0011 010 I DS_S_RELEASE_OUTPUT / 0 1 1 ok SERID switching output 01x 011 I SET_MBRENT_PULSE_START (upper dead band) index 50 300 70 ok SERID application 10x 0111 I GET_MINPUTUDE_FACTOR (ampillude threshold) ADC values 10 10000 200 </td <td></td> <td>1</td> <td>0 = nc</td> <td></td> <td>0</td> <td>ok</td> <td>SEND</td> <td></td> <td>010x 010 1</td>		1	0 = nc		0	ok	SEND		010x 010 1
T SET_SWITCH_THRESHOLD (lower threshold switching output) mm 0 L 600 ok SERID switching output 0010 010: I GET_SWITCH_THRESHOLD (lower threshold switching output) mm 0 L 600 ok SERID switching output 0011 010: I GET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SERID switching output 0011 010: I 0 L 600 ok SERID switching output 0011 010: I 0 L 600 ok SERID switching output 0011 010: I 0 1 1 ok SERID switching output 0011 010: I 0 1 1 ok SERID switching output 0011 010: I 0 1 1 0 SERID switching output 0011 010: I 0 1 1 0 SERID splication		1			0	ok			
I GET_SWITCH_THRESHOLD (lower threshold switching output) mm 0 L 600 ok SEHD switching output 0011 01 I SET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SEHD switching output 0011 01 I SET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SEHD switching output 0011 01 I SET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output // 0 1 1 0k SEHD switching output 011 01 I SET_MEASUREMENT_PULSE_START (upper dead band) index 50 300 70 ok SEHD application I SET_MAPLITUDE_FACTOR (amplitude threshold) ADC values 10 10000 200 ok SEHD application 0011 011 I SET_MULT_SLAPE_COAX mbit 2000 10000 200 ok SEHD application 01001 011 0001 0111 0001 0111 0001 0111 0010 0111 0001 0111 0001 0111 0001 0100		mm	0	L	600	ok	SEND		0010 010 1
O GET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SERID switching output 1 DS_SET_SWITCH / 0 1 1 ok SERID switching output ////////////////////////////////////	3 GET SWITCH THRESHOLD (lower threshold switching output)	mm	0	L	600	ok	SEND		
O GET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output mm 0 L 600 ok SERID switching output 1 DS_SET_SWITCH / 0 1 1 ok SERID switching output ////////////////////////////////////	SET_SWITCH_DEACTIVATION_LEVEL (upper threshold switching output	mm	0	L	600	ok	SEND	switching output	0011 010 1
Image: Dispet Less: OutPut I </td <td></td> <td>mm</td> <td>0</td> <td>L</td> <td>600</td> <td>ok</td> <td>SEND</td> <td>switching output</td> <td></td>		mm	0	L	600	ok	SEND	switching output	
Image: Description I	1 DS SET SWITCH	1	0	1	1	ok	SEND	switching output	2
1 SET_MEASUREMENT PLUSE_START (upper dead band) index 50 300 70 ok SERIO application 01xx0111 IGET_MARUPEMENT PLUSE_START (upper dead band) index 50 300 70 ok SERIO application 01xx0111 IGET_MARUPEMENT PLUSE_START (upper dead band) index 50 300 70 ok SERIO application 10xx0111 IGET_MARUPLITUDE_FACTOR (amplitude threshold) ADC values 10 10000 200 ok SERIO application 10xx0111 IMEASURE_EMPTY_SCAN (perform disturbance signal scan) I I I ok SERIO application 0011011 ISET_TL_LINE_SLOPE_COAX m/s 2000 10000 2609 ok SERIO calibration 0011011 ISET_TL_LINE_SLOPE_COAX m/s 2000 10000 2609 ok SERIO calibration 0010111 ISET_TL_LINE_SLOPE_COAX m/s 2000 10000 390.0 ok SERIO calibration 0111	2 DS RELEASE OUTPUT	1	1	1	1	ok	SEND	both outputs	
1 GET_MEASURELENTY_PULSE_START (upper dead band) index 50 300 70 ok SEHD application 1 SET_MARPLITUDE_FACTOR (amplitude threshold) ADC values 10 10000 200 ok SEHD application 10x 0111 GET_MARPLITUDE_FACTOR (amplitude threshold) ADC values 10 10000 200 ok SEHD application 10x 0111 IMEASURE_EMPTY_SCAN (perform disturbance signal scan) / / / / ok SEHD application 0001011 SET_T_LINE_SLOPE_COAX mis 2000 10000 2609 ok SEHD calibration 001101 GET_TL_LINE_SLOPE_COAX mis 2000 10000 2609 ok SEHD calibration 0 GET_TL_LINE_OFFSET_COAX mm -1000,0 10000 380,0 ok SEHD calibration GET_TL_LINE_OFFSET_COAX mm -1000,0 10000 2820 ok SEHD calibration SET_TL_LINE_OFFSET_MONO mm <td< td=""><td>3 SET MEASUREMENT PULSE START (upper dead band)</td><td>index</td><td>50</td><td>300</td><td>70</td><td>ok</td><td>SEND</td><td></td><td>01xx 011 1</td></td<>	3 SET MEASUREMENT PULSE START (upper dead band)	index	50	300	70	ok	SEND		01xx 011 1
SET_NAMPLITUDE_FACTOR (amplitude threshold) ADC values 10 10000 200 ok SEND application 10x0111 GET_AMPLITUDE_FACTOR (amplitude threshold) ADC values 10 10000 200 ok SEND application 10x0111 IMEASURE_EMPTY_SCAN (perform disturbance signal scan) / / / / / ok SEND application 00010111 SET_T_LINE_SLOPE_COAX m/s 2000 10000 2609 ok SENO calibration 00010111 SET_T_LINE_SLOPE_COAX m/s 2000 10000 2609 ok SENO calibration 00101111 SET_T_LINE_OFFSET_COAX m/s 2000 10000 2609 ok SENO calibration 00101111 SET_T_LINE_OFFSET_COAX m/s 2000 10000 390.0 ok SENO calibration 00101111 SET_T_LINE_OFFSET_COAX m/m -1000.0 10000 390.0 ok SENO calibration 0010 391.0<		index	50	300	70	ok	SEND		
IMEASURE_EMPTY_SOLAN (perform disturbance signal scan) I		ADC values	10	10000	200	ok	SEND		10xx 011 1
Image: SET_TL_LINE_SLOPE_COAX mis 2000 10000 2609 ok SEND calibration IGET_TL_UNE_SLOPE_COAX mis 2000 10000 2809 ok SEND calibration IGET_TL_UNE_SLOPE_COAX mm -1000.0 1000.0 390.0 ok SEND calibration IGET_TL_UNE_OFFSET_COAX mm -1000.0 1000.0 -390.0 ok SEND calibration IGET_TL_UNE_SLOPE_MONO mis 2000 10000 2820 ok SEND calibration ISET_TL_UNE_SLOPE_MONO mm -1000.0 1000.0 359.5 ok SEND calibration ISET_PROBE_END_OFFSET_MONO	GET_AMPLITUDE_FACTOR (amplitude threshold)	ADC values	10	10000	200	ok	SEND	application	
IDET_TL_LINE_SLOPE_COAX mis 2000 10000 2609 ok SEND calibration IDET_TL_LINE_OFFSET_COAX mm -1000.0 1000.0 -390.0 ok SEND calibration IDET_TL_LINE_OFFSET_COAX mm -1000.0 1000.0 -390.0 ok SEND calibration IDET_TL_LINE_SLOPE_MONO mis 2000 10000 2620 ok SEND calibration IDET_TL_LINE_SLOPE_MONO mis 2000 10000 2620 ok SEND calibration IDET_TL_LINE_OFFSET_MONO mis 2000 1000.0 2620 ok SEND calibration ISET_TL_LINE_OFFSET_MONO mis 2000 1000.0 -359.5 ok SEND calibration ISET_TL_LINE_OFFSET_MONO mm -1000.0 1000.0 -359.5 ok SEND calibration ISET_PROBE_END_OFFSET_COAX 11/1000 index -5000 0 ok SEND calibration	MEASURE_EMPTY_SCAN (perform disturbance signal scan)	1	1	1	1	ok	SEND	application	00010111
D D SET_TL_LINE_OFFSET_COAX mm -1000,0 1000,0 -390,0 ok SEND calibration I GET_TL_LINE_OFFSET_COAX mm -1000,0 1000,0 -390,0 ok SEND calibration I GET_TL_LINE_SLOPE_MONIO mis 2000 1000,0 2620 ok SEND calibration I GET_TL_LINE_SLOPE_MONIO mis 2000 10000 2620 ok SEND calibration I SET_TL_LINE_OFFSET_MONIO mis 2000 1000,0 359,5 ok SEND calibration I SET_TL_LINE_OFFSET_MONIO mm -1000,0 1000,0 -359,5 ok SEND calibration I SET_PROBE_END_OFFSET_MONIO mm -1000,0 1000,0 -359,5 ok SEND calibration I SET_PROBE_END_OFFSET_MONIO mm -1000,0 0 ok SEND calibration	SET TL LINE SLOPE COAX	m/s	2000	10000	2609	ok	SEND	calibration	5
I GET_IL_LINE_OFFSET_COAX mm -1000,0 1000,0 -390,0 ok SEHD calibration 2 SET_IL_LINE_SLOPE_MONO m/s 2000 10000 2820 ok SEHD calibration GET_IL_LINE_SLOPE_MONO m/s 2000 10000 2820 ok SEHD calibration 1 SET_IL_LINE_OFFSET_MONO m/s 2000 1000,0 359,5 ok SEHD calibration 3 GET_IL_LINE_OFFSET_MONO mm -1000,0 1000,0 -359,5 ok SEHD calibration 5 GET_IL_LINE_OFFSET_MONO mm -5000 0 ok SEHD calibration	GET_TL_LINE_SLOPE_COAX	m/s	2000	10000	2609	ok	SEND	calibration	
2 SET_TL_LINE_SLOPE_MONO mis 2000 10000 2820 ok SEND calibration IGET_TL_LINE_SLOPE_MONO mis 2000 10000 2620 ok SEND calibration ISET_TL_LINE_OFFSET_MONO mm -1000.0 1000.0 -369.5 ok SEND calibration ISET_TL_LINE_OFFSET_MONO mm -1000.0 1000.0 -369.5 ok SEND calibration ISET_TL_LINE_OFFSET_MONO mm -1000.0 1000.0 -369.5 ok SEND calibration ISET_PROBE_END_OFFSET_CONX 11/100 index -5000 0 ok SEND calibration) SET_TL_LINE_OFFSET_COAX	mm	-1000,0	1000.0	-390,0	ok	SEND	calibration	1
GET_TL_LINE_SLOPE_MONO m/s 2000 10000 2620 ok SEND calibration I SET_TL_LINE_OFFSET_MONO mm -1000.0 1000.0 -359.5 ok SEND calibration GET_TL_LINE_OFFSET_MONO mm -1000.0 1000.0 -359.5 ok SEND calibration SET_PROBE_END_OFFSET_MONO mm -1000.0 1000.0 -359.5 ok SEND calibration SET_PROBE_END_OFFSET_COAX 1/1000 index -5000 0 ok SEND calibration		mm	-1000,0	1000,0		ok	SEND	calibration	2
IDET_TL_LINE_SLOPE_MONO m/s 2000 10000 2620 ok SEND calibration ISET_TL_LINE_OFFSET_MONO mm -1000.0 1000.0 -359.5 ok SEND calibration IGET_TL_LINE_OFFSET_MONO mm -1000.0 1000.0 -359.5 ok SEND calibration ISET_PROBE_END_OFFSET_MONO mm -1000.0 1000.0 -359.5 ok SEND calibration	SET_TL_LINE_SLOPE_MONO	m/s	2000	10000	2620	ok	SEND	calibration	
GET_TL_LINE_OFFSET_MONO mm -1000.0 1000.0 -359.5 ok SEND calibration SET_PROBE_END_OFFSET_COAX 1/1000 index -5000 5000 0 ok SEND calibration		m/s	2000	10000	2620	ok	SEND	calibration	2
GET_TL_LINE_OFFSET_MONO mm -1000.0 1000.0 -359.5 ok SEND calibration SET_PROBE_END_OFFSET_COAX 1/1000 index -5000 5000 0 ok SEND calibration	SET_TL_LINE_OFFSET_MONO	mm	-1000,0	1000,0	-359,5	ok	SEND	calibration	
SET_PROBE_END_OFFSET_COAX 1/1000 index -5000 5000 0 ok SEND calibration		mm	-1000,0	1000,0	-359,5	ok	SEND	calibration	12
7 GET_PROBE_END_OFFSET_COAX 1/1000 index -5000 5000 0 ok SEND_calibration		1/1000 index	-5000	5000	0	ok	SEND	calibration	
SET PROBE END OFFSET MONO 1/1000 index -5000 5000 0 ok SEND calibration	GET_PROBE_END_OFFSET_COAX	1/1000 index	-5000	5000	0	ok	SEND	calibration	<u></u>

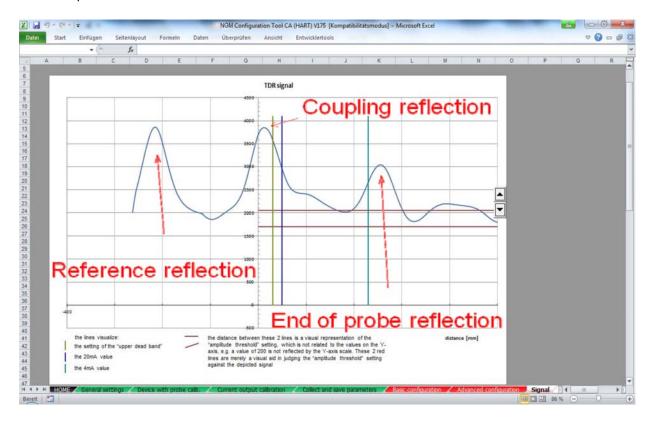
8.6.22 Signal Discussion 1

Empty Coaxial Probe


- Nice reference reflection at the beginning
- Perfect coupling into the coaxial probe
- Positive end of probe reflection which corresponds to the physical end of probe

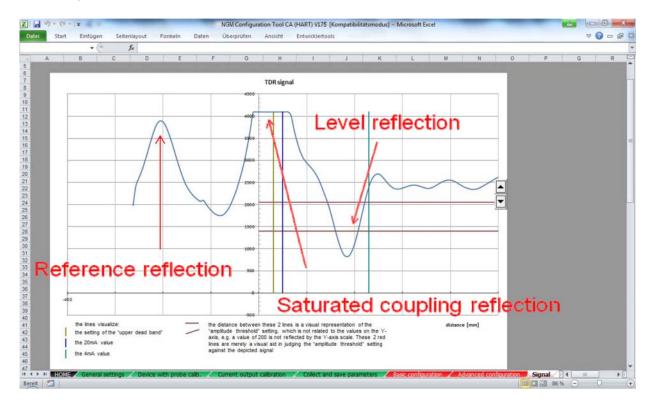
8.6.23 Signal Discussion 2

Level Coaxial Probe


- Stable reference reflection at the beginning
- Negative level reflection at 168mm
- No end of probe reflection as energy is completely reflected at water surface

8.6.24 Signal Discussion 3

Empty Rod Probe


- · Nice reference reflection at the beginning
- Strong positive impulse at the transition of coupling to the single rod
- Reflection can change with mounting conditions.
- Positive end of probe reflection which corresponds to the physical end of probe

8.6.25 Signal Discussion 4

Level Rod Probe

- · Stable reference reflection at the beginning
- Negative level reflection at 168mm
- No end of probe reflection as energy is completely reflected at water surface
- Positive coupling reflection in saturation as amplification factor increased

9. Technical Information

Operating instructions, data sheet, approvals and further information via the QR code on the device or via <u>www.koboldusa.com</u>

10. Order Codes

Operating instructions, data sheet, approvals and further information via the QR code on the device or via <u>www.koboldusa.com</u>

11. Dimensions

Operating instructions, data sheet, approvals and further information via the QR code on the device or via <u>www.koboldusa.com</u>

12. Safety Instructions for Ex-Versions Model NGM

NGM

4-wire TDR-Sensor with single rod or coaxial probe for continuous level measurement and point level detection in liquids, with analog and switching output.

DOCUMENT DESCRIPTION

These safety instructions are part of the NGM Quick Installation Guide and give instructions regarding to proper installation and operation of NGM in hazardous areas.

GENERAL DESCRIPTION

NGM is suitable for applications with hazardous gas or dust atmospheres, for applications requiring instruments of category 1/2G, 1/2D or 2G, 2D. If NGM is installed and operated in hazardous areas, the general hazardous area installation regulations IEC 60079-14, all relevant national, regional and local regulations and standards, as well as these safety instructions must be observed. The installation of electrical equipment in hazardous areas must always be carried out by qualified personnel.

APPROVAL DETAILS

CE 0158 SEV 13 ATEX 0108 X

- 🔄 II 1/2G Ex ia/db IIC T6 Ga/Gb
- 🔄 🛛 II 1/2D Ex ia/tb IIIC T86°C IP68 Da/Db
- 🔄 🛛 II 2G Ex ia db IIC T6 Gb
- II 2D Ex ia tb IIIC T86°C IP68 Db

SENSOR COMPONENTS

NGM consists of three major components: housing, feedthrough, and probe. The only components that are exposed to the atmosphere inside the tank are probe and the part of the feedthrough below the hexagon. NGM has a flameproof metal housing that contains the sensor s electronics and input/output terminals and has no contact to the atmosphere inside the tank. For hazardous applications that require category 1/2G, 1/2D devices, the housing is installed in hazardous areas requiring devices of category 2G, 2D (zone 1, zone 21). The feedthrough of the sensor (acting as separation barrier between zones 0/1, zone 20/21) is installed in the wall which separates areas requiring devices of category 2G, 2D from 1G, 1D. The probe is installed in hazardous areas requiring devices of category 2G, 2D devices, all components of NGM are installed in hazardous areas requiring devices of category 2G, 2D (zone 1, zone 21).

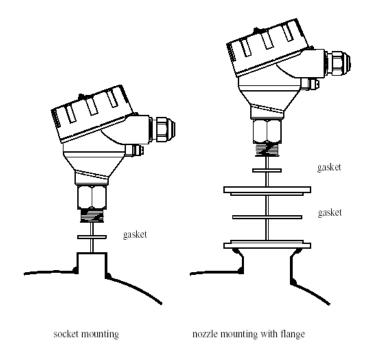

housing housing feedthrough probe

Figure 1: sensor components

MOUNTING

NGM is mounted vertically to the tank via its connection thread, which is screwed directly into a standard threaded tank connection, i.e. weld-in socket, or it can be screwed into a flange, which is then connected to a tank nozzle. NGM should not be welded directly into the tank. Neither should flanges be welded onto NGM. Welding on the metal parts of NGM will cause serious damage to the sensor. Do not lift or handle NGM by its probe; this can cause excessive stress on the probe connection. NGM should be handled by the hexagon or the lower section of the housing. Do not screw in NGM by its housing; it should be tightened only via its hexagon (wrench size 32mm for connection thread G3/4A). Tighten the coaxial probe only at its lower hexagon; the upper hexagon of the coaxial probe is not needed for mounting. The customer has to ensure suitability of all materials exposed to the tank atmosphere as well as proper sealing of the sensor connection; based on his process conditions like temperature, pressure and resistance against his process liquids and atmosphere. G thread connections require a suitable gasket for pressure-tight joints. The G3/4A connection thread of NGM is supplied with a gasket made of Klingersil C-4400, thickness 2mm. The suggested tightening torque for this thread size, this type of gasket, and a process pressure of max. 40bar is 25Nm (maximum permissible torque: 45 Nm). For NPT thread connections, pressure-tight joints require a sealant directly on the threads.

Figure 2: mounting

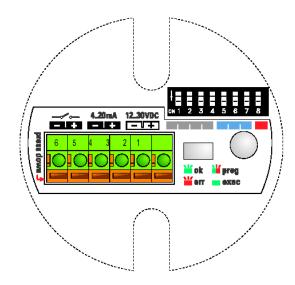
MOUNTING CONSIDERATIONS

The probes should be installed so that they are not directly impacted by liquids flowing out of the filling inlet. They should neither touch nor sway towards other objects inside the tank or the tank/nozzle walls; e.g. by agitator swirls. In applications with very strong fluid movements, which can also cause excessive lateral force on the probe, it is recommended to fix the probe. The anchoring fixtures are customer supplied.

The customer is not permitted to disassemble the feedthrough from the housing or perform any mechanical repairs/alterations on either the feedthrough or the enclosure. If the NGM requires service or repair, please contact Kobold.

TEMPERATURE CLASSES

For applications in hazardous gas atmospheres, the maximum permissible application and ambient temperatures, depending on the temperature classes, are specified in figure 3. For applications in hazardous dust atmospheres, the maximum permissible surface temperature is +86°C and the ambient temperature range is -40 +70°C. For hazardous areas that require category 1/2G devices, the application pressure must be between 0.8...1.1 bar absolute. If NGM is operated at temperatures higher than those specified in figure 3, please make sure through appropriate measures that there is no danger of ignition from the hot surfaces. The maximum permissible ambient temperature should not exceed the values specified in figure 3. For application conditions in non-hazardous area, please refer to the data sheet.

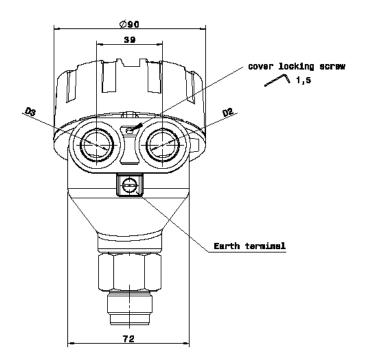

Figure 3: temperature classes

	CATEGORY 1/2G	
Temperature	Application	Ambient
class	temperature	temperature
T1T6	-20+60°C	-40+70°C
	CATEGORY 2G	
T6	-40+85°C	-40+70°C
T5	-40+100°C	-40+70°C
T4	-40+135°C	-40+70°C
T1T3	-40+150°C	-40+70°C
CAT	EGORY 1/2D AND) 2D
Max. surface ten	nperature: +86°C	-40+70°C

ELECTRICAL DATA

Supply voltage (terminals 1+2): U = 12 30V DC Um = 250V AC Analog output (terminals 3+4): I = 4 20mA Um = 250V AC Switching output (terminals 5+6): Us = 0 U Um = 250V AC

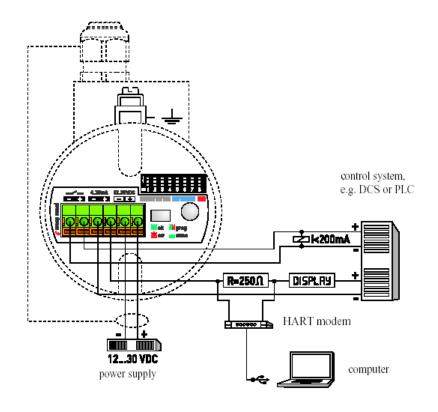
Figure 4: electrical data



CABLE ENTRIES AND CABLE GLANDS

The housing has two cable entries. For installation in hazardous areas, only cable glands certified according to IEC 60079-1 or certified conduit systems are permitted. The tightening torque specified by the manufacturer of the certified cable glands or conduit systems has to be observed. The torque mentioned on the sensor electronic only applies to standard cable glands/conduits, which are not permitted for installation in hazardous areas. Both cable entries can be fitted with cable glands/conduits. If only one cable gland/conduit is fitted, it is recommended to use cable entry D2 (see Fig. 5).

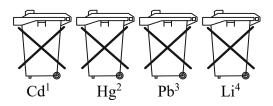
Then cable entry D3 has to be sealed with a certified screw plug. The cable entries have to be properly sealed and cable glands have to be properly tightened around cable of suitable type and diameter to ensure the IP68 rating of the housing. The seals for mounting the cable glands/conduits, the cable glands/conduits themselves and the cable used for wiring have to be rated for a temperature of +86 °C. When wiring with shielded or armoured cable, suitable cable glands have to be used. The contact between the metal housing and the shielding of the cable is made by using a suitable EMC-type cable gland. Ground the shielding of the cable only on the sensor side; not on the supply side.


Figure 5: cable entries

WIRING

Before opening the housing cover for any reason, verify that the power supply for the sensor has been switched off for at least 6 minutes or no explosive atmosphere is present. After wiring NGM, tighten the housing cover properly by turning it clockwise (make sure the cover safety chain does not tangle up) and properly tighten the cover locking screw with an allen key size 1,5mm (see Fig. 5). Only when the cover is tightened and secured it is permitted to power up NGM. The housing cover of NGM features a thread acting as a flameproof gap and a caution message; it must not be exchanged for any other cover. Establish an equipotential connection (potential equalization) between the external earth terminal of NGM and the closest ground potential terminal of the tank.

Figure 6: wiring


13. Disposal

Note!

- Avoid environmental damage caused by media-contaminated parts
- Dispose of the device and packaging in an environmentally friendly manner
- Comply with applicable national and international disposal regulations and environmental regulations.

Batteries

Batteries containing pollutants are marked with a sign consisting of a crossed-out garbage can and the chemical symbol (Cd, Hg, Li or Pb) of the heavy metal that is decisive for the classification as containing pollutants:

- 1. "Cd" stands for cadmium
- 2. "Hg" stands for mercury
- 3. "Pb" stands for lead
- 4. "Li" stands for lithium

Electrical and electronic equipment

14. EU Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Guided Wave Radar Level Model: NGM-...

to which this declaration relates is in conformity with the standards noted below:

EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements

EN 61326-2-3:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 2-3: Particular requirements - Test configuration, operational conditions and performance criteria for transducers with integrated or remote signal conditioning

EN IEC 63000:2018 Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances

Also, the following EC guidelines are fulfilled:

2014/30/EU	EMC Directive
2011/65/EU	RoHS
2015/863/EU	Delegated Directive (RoHS III)

Additional for **NGM-...E4.** (ATEX version) with EC-Type Examination Certificate **SEV 09 ATEX 0171 X**:

that the product is in conformity with the standards noted below:

EN 60079-0:2018 Explosive atmospheres - Part 0: Equipment - General requirements

EN 60079-1:2014 Explosive atmospheres - Part 1: Equipment protection by flameproof enclosures "d"

EN 60079-11:2012 Explosive atmospheres - Part 11: Equipment protection by intrinsic safety "i"

EN 60079-26:2015 Explosive atmospheres - Part 26: Equipment with Equipment Protection Level (EPL) Ga

EN 60079-31:2014 Explosive atmospheres - Part 31: Equipment dust ignition protection by enclosure "t"

Also, the following EC guidelines are fulfilled:

2014/34/EU Equipment and Protective systems intended for use in a potentially Explosive Atmospheres **Quality Management Production** Certificate number: BVS 21 ATEX ZQS/E110 Notified body: DEKRA Testing and Certification GmbH Identification number: 0158

ppa. Willing

H. Volz General Manager

M. Wenzel Proxy Holder

Hofheim, 15 Dec. 2022

15. UK Declaration of Conformity

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Guided Wave Radar Level Model: NGM-...

to which this declaration relates is in conformity with the standards noted below:

BS EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements

BS EN 61326-2-3:2013 Electrical equipment for measurement, control and laboratory use. EMC requirements. Particular requirements. Test configuration, operational conditions and performance criteria for transducers with integrated or remote signal conditioning

BS EN IEC 63000:2018

Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances.

Also, the following UK guidelines are fulfilled:

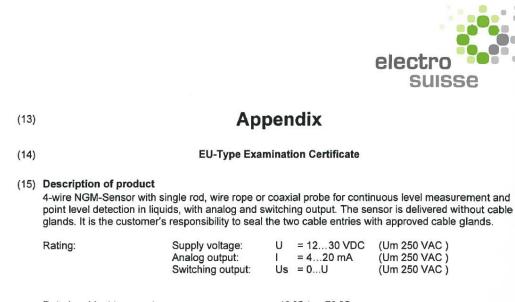
S.I. 2016/1091 S.I. 2012/3032

Electromagnetic Compatibility Regulations 2016

The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

Poper. Willing

Hofheim, 05 August 2021


H. Volz General Manager

M. Wenzel Proxy Holder

16. ATEX Certificate

				electro suisse
-			(Ex)	
	(1)	EU-1	Type Examination	Certificate
	(2)	Equipment or protective sys explosive atmospheres - Dir	tem intended for use in potentially rective 2014/34/EU	,
	(3)	Certificate number:	SEV 13 ATEX 0108 X	
	(4)	Product:	Level Sensor NGM-xxx	
	(5)	Manufacturer:	KOBOLD Messring Gmb	н
	(6)	Address:	Nordring 22-24, 65719 H	ofheim, GERMANY
No.	(7)	The equipment and any acc the documents therein refer		ied in the schedule to this certificate and
	(8)	the European parliament a been found to comply with	nd of the council, dated 26 Febru the essential health and safety	vith article 17 of Directive 2014/34/EU of uary 2014, certifies that this product has requirements relating to the design and sive atmospheres given in Annex II to the
		The examination and test re	sults are recorded in confidential	report no 09-IK-0358.40 incl. ext1
	(9)	Compliance with the essent	al health and safety requirements	has been assured by compliance with:
		EN 60079-0:12 + A11:13 EN 60079-26:15	EN 60079-1:14 EN 60079-31:14	EN 60079-11:12
	(10)	If the sign «X» is placed a	equirements listed at item 18 of the after the certificate number, it inc se specified in the schedule to this	dicates that the product is subjected to
	(11)	This EU type examination of	ertificate relates only to design a directive apply to the manufactu	nd construction of the specified product. rring process and supply of this product.
	(12)	The marking of the product	_	
ž				2G Ex ia db IIC T6 Gb 2D Ex ia tb IIIC T86 °C IP68 Db
		irosuisse ied Body ATEX	$ \leq \leq \leq \leq \leq \leq \leq $	
		n Plüss uct Certification	VIII	
	www	electrosuisse.ch Fehr	altorf, 2016-04-26	page 1 of 3

page 60

Rated ambient temperature range:

-40 °C to +70 °C

The temperature class depends on ambient temperature and application temperature on the sensor. This relations are shown in the following tables:

	CATEGORY 1/2G	
Temperature	Application	Ambient
class	temperature	temperature
T1T6	-20+60 °C	-40+70 °C
·	CATEGORY 2G	
T6	-40…+85 °C	-40+70 °C
T5	-40+100 °C	-40+70 °C
T4	-40+135 °C	-40+70 °C
T1T3	-40+150 °C	-40+70 °C
(CATEGORY 1/2D and 2D	
max. surface te	mperature: +86 °C	-40+70 °C

page 2 of 3

www.electrosuisse.ch

Fehraltorf, 2016-04-26

 (16) Report number 09-IK-0358.40 incl. ext1
 (17) Specific conditions of use POWER DOWN WARNING: Marking and Safety Instruction: After de-energizing, wait 6 minutes before opening
 CABLE ENTRIES AND CABLE GLANDS: Safety Instruction: The housing has two cable entries. For installation in hazardous areas, only cable glands certified according to IEC 60079-1 or certified conduit systems are permitted.
 (18) Essential health and safety requirements In addition to the essential health and safety requirements (EHSRs) covered by the standards listed at item 9, the following are considered relevant to this product, and conformity is demonstrated in the report:

Clause Subject Keine

(19) Drawings and Documents

See Test Report "Manufacturer's Documents"

Fehraltorf, 2016-04-26