Magnetic-Inductive Flow Velocity Sensor

Operating Manual
Contents

1 IDENTIFICATION.. 3
 1.1 Manufacturer/supplier ... 3
 1.2 Product type ... 3
 1.3 Product name ... 3
 1.4 Issue date ... 3
 1.5 Version No. ... 3

2 APPLICATION ... 3

3 MODE OF OPERATION AND SYSTEM DESIGN ... 4
 3.1 Mode of operation .. 4
 3.2 System design ... 4
 3.2.1 Transmitter mounted on the sensor .. 4
 3.2.2 Remote installation of the transmitter ... 5
 3.2.3 Sensor versions PIT

4 CHARACTERISTICS ... 6
 4.1 Accuracy ... 6
 4.2 Conductivity of fluid ... 6
 4.3 Influence of ambient temperature ... 6
 4.4 Influence of medium temperature ... 6

5 CONDITIONS OF USE .. 6
 5.1 Installation conditions... 6
 5.1.1 Immersion depth of PIT-*** in the pipe .. 6
 5.1.2 Removal and installation under process pressure ... 7
 5.1.3 Grounding ... 7
 5.2 Use in hazardous areas ... 7
 5.3 Ambient conditions ... 7
 5.3.1 Ambient temperature ranges .. 7
 5.3.2 Storage temperature .. 7
 5.3.3 Climatic category .. 7
 5.3.4 Ingress Protection ... 7
 5.3.5 Shock resistance/vibration resistance ... 7
 5.4 Medium temperature and pressure ... 8
 5.4.1 Direct mounted transmitter .. 8
 5.4.2 Remote mounted transmitter .. 8

6 DIMENSIONS/WEIGHT ... 8
 6.1 PIT-UMF2 (B) dimensional drawing for remote transmitter ... 8
 6.2 PIT-** dimensional drawing with direct mounted transmitter UMF2 (B) ... 9

7 POWER SUPPLY / ELECTRICAL CONNECTION ... 10

8 CE-MARK10

9 STANDARDS AND DIRECTIVES, CERTIFICATES AND APPROVALS .. 10

10 SAFETY INFORMATION ... 10
 10.1 Intended use ... 10
 10.2 Installation, start-up and operating personnel ... 10

11 PACKAGING, STORAGE AND TRANSPORT .. 10

12 MAINTENANCE ... 10

13 RETURNING DEVICES FOR REPAIR AND SERVICE ... 11

14 OPTIONS11
 14.1 Removal and installation under process pressure .. 11
 14.2 PIT (Sensor) Ingress protection IP68 ... 11
 14.2.1 Wiring diagram for remote installation .. 12

15 DECONTAMINATION CERTIFICATE FOR DEVICE CLEANING .. 13

16 DECLARATION OF CONFORMITY ... 14
Introduction

These Installation and Operating Instructions serve as a tool for the correct installation, operation and maintenance of the device. They are a supplement to the PIT-UMF2 (B) device description. Read these manuals carefully before the device is installed and put into use. They do not include special versions or applications.

All devices were thoroughly checked for order compliance and operability before delivery. Upon receipt, please conduct a visual inspection of possible damage that may be identified as having occurred during shipment. If you discover any defect, please contact our head office in Cologne or the local sales office responsible for your area (see our Web site). Apart from a description of the error, we will need the equipment type and serial number of the delivery.

Kobold shall not furnish guarantee for any repair work done without prior notice. Unless otherwise agreed on, the rejected parts must be made available to us in case a claim is made.

1 Identification

1.1 Manufacturer/supplier
KOBOLD Messring GmbH
Nordring 22-24
D-65719 Hofheim/Ts.
Internet: http://www.kobold.com, E-Mail: mailto:info.de@kobold.com

1.2 Product type
Magnetic – inductive flow sensor based upon Faraday’s law of induction

1.3 Product name
PIT-UMF2 (B)

1.4 Issue date
13.05.2014

1.5 Version No.
File: PIT-UMF2 (B)_BA_02_EN_REV1.DOC

2 Application
The magnetic-inductive flow velocity sensor PIT-UMF2 (B) is used to measure or monitor the volume flow of liquids with and without solids concentration and also other electrically conductive media while minimizing pressure drops. The conductivity of the medium must be at least 20 µS/cm. Pressure, temperature, density and viscosity do not affect the volume measurements. Smaller portions of solid particles and small gas bubbles are also measured as part of the volume flow. A larger number of solid particles or gas bubbles will lead to failures. Special electrodes are available for media that tend to form greasy films or crusts.
3 Mode of Operation and System Design

3.1 Mode of operation

It was back in 1832 that Faraday suggested utilizing the principle of electromagnetic induction for measuring flow velocities. His experiments in the Thames, though unsuccessful due to superimposed polarization effects, are nonetheless regarded as the first ones in the field of magnetic-inductive flow measurement.

According to Faraday’s law of electromagnetic induction, an electrical field E is produced in a conductive liquid moving through a magnetic field B at a velocity v in accordance with the vector product $E = [v \times B]$. A liquid at flow velocity v and a flow rate Q flows through a meter tube (4), producing a measuring-circuit voltage U_m at the two electrodes (E1 and E2) at right angles to the direction of flow and the magnetic field B generated by the field coils (3). The size of this measuring-circuit voltage is proportional to the mean flow velocity and thus the volume flow rate.

3.2 System design

The magnetic-inductive PIT-UMF2 (B) flow measurement system consists of a sensor (PIT), which picks up an induced measuring signal from the medium flowing through the pipe, and a transmitter (UMF2 (B)), which transforms this signal in standardized output signals (4-20 mA or pulses).

The PIT-*** sensor can be operated with all transmitters for magnetic-inductive flow meters manufactured by Kobold. The sensor is installed in the pipe while the transmitter is mounted directly on the sensor or separately on the outside, depending on the equipment design.

3.2.1 Transmitter mounted on the sensor

This type of construction ensures easy and trouble-free installation.
3.2.2 Remote installation of the transmitter
Kobold recommends this type of installation when there is little space or the medium temperatures are high. The sensor and the transmitter are connected by a field coil and an electrode cable. The electrode cable must be shielded and protected against disturbing interferences.

3.2.3 Sensor versions

PIT-S
- Wetted parts stainless steel / hastelloy / PTFE,
- Transmitter neck connection flange stainless steel

PIT-A
- Wetted parts PFA / hastelloy,
- Transmitter neck connection flange stainless steel

PIT-U
- Version with retraction device

(All dimensions in mm)
4 Characteristics

4.1 Accuracy
± 1.5 % of measured value plus ± 0.5 % of URV

4.2 Conductivity of fluid
≥ 20 µS/cm

4.3 Influence of ambient temperature
Pulse output ± 0.05% pro 10K
Current output ± 0.1% pro 10K

4.4 Influence of medium temperature
None

5 Conditions of use

5.1 Installation conditions
Disturbing elements (e.g. shut-off and control valves) are to be arranged downstream from the sensor. If this is not possible, flow conditioners must be installed so that no vortexes can reach the pipe section of the sensor. The mounting location in the pipe system should be selected so that the sensor is continually filled with the medium. This requirement can be met by using drains and check valves.

In order to stay within the indicated accuracy, the installation must be performed according to EN 29104 "Measurement of Fluid Flow in Closed Conduits – Methods of Evaluating the Performance of Magnetic-Inductive Flow meters.” Based on this standard, the minimum straight run of pipe ahead of the inlet must be 10 pipe diameters (> 10 x DN) and 5 pipe diameters following the outlet (> 5 x DN) [DN = nominal diameter of pipe].

In order to prevent serious measuring errors when the pipe is partially filled or when there are gas bubbles or sediment deposits, the mounting position described above should be chosen.

The limits for the product and ambient temperature must be met at the mounting location. Corrosive atmospheres must be avoided. Please also take into account the space requirement for a possible removal of the device.

5.1.1 Immersion depth of PIT-*** in the pipe
In order to suppress the influence of the flow profile as much as possible, the depth of immersion of the sensor head in the pipe must be 15 % of the inside diameter of the pipe. The socket weld fitting must not cover the top of the sensor head and must be shortened if necessary.
5.1.2 Removal and installation under process pressure
For easy removal and installation under pressure, a special retraction device is available. When using this device, the sensor head must not be damaged by closing the valve.

For details, see the Additional Operating Instructions for Removal and Installation the meter under process pressure Additional Operating Instructions PIT-Druck_BA_0X_eng.doc (see also Section 14 “Options”).

5.1.3 Grounding
For safety reasons and to ensure faultless operation of the magnetic-inductive flow meter, earthing of the flow sensor is important. In accordance with VDE 0100, Part 540, the earthing connections must be connected to the grounding conductor. To avoid false measurement, the ground potential must be identical to the ground potential of the medium.

When using insulated and lined pipes or plastic pipes, the metrological grounding of the medium for PIT-S (SS) is carried out via the wetted part of the sensor head.

All wetted parts of PIT-A (PFA) are coated with PFA. Therefore it is not possible to ground the medium via the housing parts. In this case make sure that the PIT-A sensor will be supplied an earthing. If the sensor does not have an earthing electrode ensure that a suitable earthing disc will be used.

5.2 Use in hazardous areas
The flow meters PIT-…/UMF2 (B) are not intended for use in hazardous areas.

5.3 Ambient conditions

5.3.1 Ambient temperature ranges
-20°C to +60°C, below 0°C the readability of the LCD is limited

5.3.2 Storage temperature
-25°C to +60°C

5.3.3 Climatic category
- In accordance with IEC 654-1
- Not weather-protected Class D locations exposed directly to open-air climate

5.3.4 Ingress Protection
PIT standard sensor: IP65, option: IP68
UMF2 (B) standard housing IP68 (NEMA 6P)

Caution:
Ingress protection IP68 is only achieved if suitable and tightly screwed down cable glands or conduits are used. If the cable glands are only tightened manually water may leak into the terminal compartment in the housing.

Danger:
Particular care must be taken if the window in the housing becomes fogged over or discolored because moisture, water or product might seep through the wire sheath into the terminal compartment in the housing!

Warning:
Electromagnetic compatibility is only achieved if the electronics housing is closed. Leaving the enclosure open can lead to electromagnetic disturbances.

5.3.5 Shock resistance/vibration resistance
The meter should be protected from extreme shocks and vibrations, which could cause damage.
5.4 Medium temperature and pressure

5.4.1 Direct mounted transmitter

<table>
<thead>
<tr>
<th>Version</th>
<th>Medium temperature</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIT-S (SS / PTFE)</td>
<td>-20°C to 80°C</td>
<td>16 bar</td>
</tr>
<tr>
<td>PIT-A (PFA)</td>
<td>-20°C to 80°C</td>
<td>40 bar</td>
</tr>
</tbody>
</table>

5.4.2 Remote mounted transmitter

<table>
<thead>
<tr>
<th>Version</th>
<th>Medium temperature</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIT-S (SS / PTFE)</td>
<td>-40°C to 100°C</td>
<td>16 bar</td>
</tr>
<tr>
<td>PIT-A (PFA) standard</td>
<td>-40°C to 140°C</td>
<td>40 bar</td>
</tr>
</tbody>
</table>

6 Dimensions/weight

6.1 PIT-UMF2 (B) dimensional drawing for remote transmitter

<table>
<thead>
<tr>
<th>Version</th>
<th>DN</th>
<th>T</th>
<th>Ød1</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIT-A (PFA)</td>
<td>150-600</td>
<td>163mm</td>
<td>62mm</td>
<td>145mm</td>
</tr>
<tr>
<td>PIT-S (SS / PTFE)</td>
<td>150-600</td>
<td>163mm</td>
<td>60,3mm</td>
<td>145mm</td>
</tr>
<tr>
<td>PIT-S (SS / PTFE)</td>
<td>700-1200</td>
<td>263mm</td>
<td>60,3mm</td>
<td>170mm</td>
</tr>
<tr>
<td>PIT-S (SS / PTFE)</td>
<td>1400-2000</td>
<td>363mm</td>
<td>60,3mm</td>
<td>170mm</td>
</tr>
</tbody>
</table>

Weight: 3.6 kg

DN: Nominal Diameter
T: Length of sensor
Ød1: Diameter of sensor
L: Length of socket weld fitting
ET: Immersion depth in % of pipe diameter
6.2 PIT-** dimensional drawing with direct mounted transmitter UMF2 (B)

![Dimensions Diagram](image)

(All dimensions in mm)

Weight: 5.5 kg

<table>
<thead>
<tr>
<th>Version</th>
<th>DN</th>
<th>T</th>
<th>Ød1</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIT-A (PFA)</td>
<td>150-600</td>
<td>163mm</td>
<td>62mm</td>
<td>145mm</td>
</tr>
<tr>
<td>PIT-S (SS / PTFE)</td>
<td>150-600</td>
<td>163mm</td>
<td>60,3mm</td>
<td>145mm</td>
</tr>
<tr>
<td>PIT-S (SS / PTFE)</td>
<td>700-1200</td>
<td>263mm</td>
<td>60,3mm</td>
<td>170mm</td>
</tr>
<tr>
<td>PIT-S (SS / PTFE)</td>
<td>1400-2000</td>
<td>363mm</td>
<td>60,3mm</td>
<td>170mm</td>
</tr>
</tbody>
</table>
7 Power supply / electrical connection
See name plate or Operating Instructions of the corresponding transmitter.

8 CE-Mark
The measuring system complies with the legal requirements of the following EU Directives: Low Voltage Directive 2006/95/EC, Electromagnetic Compatibility Directive 2004/108/EC

Kobold confirms compliance with the directives by attaching the CE mark to the device.

9 Standards and directives, certificates and approvals
Certified to DIN-EN-ISO 9001:2008
Production in accordance with AD2000 guidelines
TÜV approval for welding requirements in accordance with EN 3834-2

General standards and directives
EN 61010 – Safety requirements for electrical measuring, control and laboratory devices
EN 60529:2010 – Degrees of protection through housing (IP code)

EMC Directive 2004/108/EC
EN 61000-6-2:2005 (immunity for industrial environments)
EN 61000-6-3:2007+A1:2011 (emissions residential environments)
EN 55011:2009+A1:2010 group 1, class B (emitted interference)

10 Safety information
10.1 Intended use
The PIT-UMF2 (B) flow meter may be used only for flow measurements of fluids whose conductivity exceeds 20µS/cm. The manufacturer shall not be liable for damages that may result from unintended or inappropriate use.

When dealing with an aggressive medium, clarify the material durability of all wetted parts.

10.2 Installation, start-up and operating personnel
Only trained specialists authorized by the system operator may carry out the installation, electrical installations, start-up maintenance and operation. They must read and understand the operating manual and follow its instructions. Basically, the national conditions and provisions must be followed.

11 Packaging, storage and transport
Carefully unpack the device to avoid damaging it.

Storage and installation must be done in a clean and dry room so that contamination – especially of the interior of the fitting – is avoided. The ambient temperature ranges must be observed.

With the help of the delivery note enclosed in the packaging, check whether all technically relevant data coincide with your requirements.

When transporting the device to a remote mounting location, we recommend that you reuse the factory-issued packaging and the transport protection.

12 Maintenance
The device requires no maintenance if used according to its intended purpose. Cleaning might be necessary due to deposits and dirt on the electrodes or the sensor head.
13 Returning devices for repair and service

Note: In accordance with the applicable German waste disposal legislation, the owner/client is responsible for the disposal of special waste and hazardous materials. Consequently, all devices sent to us for repair must be free of any hazardous materials. This also applies to possible hollow spaces and fissures in the devices.

If repair is necessary, confirm the above-mentioned item in writing (please use the form in the Appendix). If hazardous materials remain in or on the device after it has been returned, Kobold shall be authorized to remove them at the client’s expense without further inquiry.

14 Options

14.1 Removal and installation under process pressure

In some cases it might be necessary to remove and reinstall the PIT sensor head for cleaning when the pipe is under process pressure. A special retraction device can be used for this purpose.

When using this device, it is important to ensure that the sensor head will not be damaged by closing the valve. For a detailed description of this process, see the Additional Operating Instructions (PIT-Druck_BA_03_eng) for removal and installation the meter under process pressure (Section 5.1.2).

14.2 PIT (Sensor) Ingress protection IP68

A special version of PIT is available with the IP 68 degree of protection. This version is equipped with a special terminal box, special cable glands and a special cable. The length of the cable must be specified when placing the order. The terminal box does not need to be opened during the installation. If this should be necessary, the cover must be remounted carefully. This is the only way to ensure the IP 68 degree of protection.

- The standard immersion depth is **5 m**. (Material of term. connection box Aluminum)
- Longer immersion depth up to **25 m** with filling of the term. Connection box with special sealing Compound „GHB1“ and with factory connected cable at the sensor terminal connection box. (Option)

 Material of term. connection box: Aluminum

- IP 68 version - seawater resistant: material of term. connection box : PE glass fiber reinforced, black 57x75x110 mm (Option)
14.2.1 Wiring diagram for remote installation

The outer shield has to be connected to the metalized cable glands at both ends. The inner shields are connected to each other and are plugged into the terminal with the label “Schirm / shield”.

For more details on wiring see Instruction Manual UMF2 (B)(b)_BA_01_eng.pdf
15 Decontamination certificate for device cleaning

Company: City:
Department: Name:
Tel. No.:

This flow meter
Type PIT-
was operated using the measured medium..

Since this measured medium is dangerous in water/poisonous/corrosive/flammable, we have
- checked that all hollow spaces of the device are free of these materials*
- neutralized and flushed all hollow spaces of the device*
*cross out what is not applicable.

We hereby confirm that in resending the device no danger to persons or the environment is posed by the residual measured substance.

Date: Signature:

Stamp
16 Declaration of Conformity

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Magnetic-Inductive Flow Velocity Sensor
Model: PIT

to which this declaration relates is in conformity with the standards noted below:

- **EN 61010-1: 2004** Safety requirements for electrical measuring, control and laboratory devices
- **EN 61000-6-2:1999** immunity for industrial environments
- **EN 61000-6-3:2001** emissions residential environments
- **EN 55011:1998+A1:1999** group 1, class B, emitted interference

Also the following EC guidelines are fulfilled:

- **2006/95/EC** Low Voltage Directive
- **2004/108/EC** EMC Directive

Hofheim, 22. Mai 2014

H. Peters
General Manager

M. Wenzel
Proxy Holder
Transmitter for magnetic-inductive flowmeters UMF2 (B)

Operating Manual

Please read the instructions carefully and store them in a safe space
Inhalt

INTRODUCTION .. 7
I. Shipping and storage; product inspection ... 7
II. Warranty .. 7
III. Application domain the operating manual .. 7
IV. Measures to be taken before sending your device to the manufacturer for repair 7
V. Supplementary operating instructions regarding the HART® interface 7
VI. Operating manual of explosion-proof flowmeters ... 7

1. STEPS PRIOR TO OPERATION .. 8
 1.1 Installation and servicing ... 9
 1.2 Safety advisory for the user ... 9
 1.3 Hazard warnings ... 9
 1.3.1 Danger ... 9
 1.3.2 Warning ... 9
 1.3.3 Caution ... 10
 1.3.4 Note .. 10
 1.4 Proper use of the device .. 10
 1.5 Returning your flowmeter for servicing or calibration 10
 1.6 Replacement of the transmitter electronics .. 11

2. IDENTIFICATION .. 11

3. COMMISSIONING ... 12
 3.1 Installation of magnetic-inductive flowmeters ... 12
 3.2 Potentials .. 12
 3.3 Cathodic protective units .. 12
 3.4 Zero point calibration .. 13
 3.5 Startup conditions ... 13
 3.6 Commissioning the PIT, PITE and PITY flow velocity sensors 13
4. APPLICATION DOMAIN OF UMF2 (B) TRANSMITTER ... 14

5. UMF2 (B) TRANSMITTER: MODE OF OPERATION AND CONFIGURATION ... 15
 5.1 Measuring principle ... 15
 5.2 System design ... 16
 5.2.1 Standard version .. 16
 5.2.2 Control unit BE3 ... 16
 5.2.3 Optional equipment ... 16
 5.2.4 Data memory chip DSM ... 17
 5.2.5 Safety of operation .. 17

6. INPUT .. 18
 6.1 Measured variable ... 18
 6.2 Measuring range .. 18
 6.3 Operating the PIT, PITY and PITY flow velocity sensors with UMF2 (B) 18

7. OUTPUT ... 19
 7.1 Output signal ... 19
 7.2 Failure signal .. 20
 7.3 Load of the current output .. 20
 7.4 Damping ... 20
 7.5 Low flow cut-off ... 20

8. UMF2 (B) PERFORMANCE CHARACTERISTICS ... 21
 8.1 Reference conditions ... 21
 8.2 Measuring tolerance ... 21
 8.3 Repeatability ... 21
 8.4 Influence of ambient temperature .. 21

9. UMF2 (B) OPERATING CONDITIONS ... 21
 9.1 Installation conditions ... 21
 9.1.1 Compact version ... 21
 9.1.2 Separate version .. 21
 9.2 Environmental conditions .. 23
 9.2.1 Ambient temperature .. 23
 9.2.2 Ambient temperature range ... 23
9.2.3 Storage temperature

23

9.2.4 Degree of protection

23

9.3 Process conditions

24

- **9.3.1 Fluid temperature**
- **9.3.2 State of aggregation**
- **9.3.3 Viscosity**
- **9.3.4 Fluid temperature limit**
- **9.3.5 Flow rate limit**
- **9.3.6 Pressure loss**
- **9.3.7 Empty pipe detection**

10. CONSTRUCTION DETAILS

25

- **10.1 Type of construction / dimensions of separate version**
- **10.2 Weight**
- **10.3 Material**
- **10.4 Electrical connection**
- **10.5 Process terminals**
 - **10.5.1 Mains and signal terminals**
- **10.6 HART® connection**
- **10.7 Wiring diagramm for the separate version**
 - **10.7.1 UMF2 (B) sensor terminals**
- **10.8 Cable specification**

11. MAINTENANCE AND REPAIR

31

- **11.1 Mains fuse**
- **11.2 Replacement of terminal board**
- **11.3 Exchange of transmitter electronic**

12. UMF2 (B) CONTROL UNIT

32

- **12.1 Introduction**
- **12.2 Display**
- **12.3 Operating modes**
- **12.4 Operation**
 - **12.4.1 Operation interface**
 - **12.4.2 The keys and their functions**
 - **12.4.3 Functional classes, functions and parameters**
13. UMF2 (B) TRANSMITTER FUNCTIONS .. 37

13.1 MEASURED VALUES functional class .. 38
13.1.1 Volume flow rate .. 39
13.1.2 Forward flow counter 1 ... 39
13.1.3 Forward flow counter 2 ... 39
13.1.4 Reverse flow counter ... 39
13.1.5 Flow velocity .. 40
13.1.6 Relative flow rate ... 40
13.1.7 QV + Forward flow counter ... 40
13.1.8 QV + Forward flow counter 2 ... 40
13.1.9 QV + flow velocity ... 41
13.1.10 Display mode during startup .. 41
13.1.11 Raw values .. 41

13.2 PASSWORD functional class ... 42
13.2.1 Customer-password .. 42
13.2.2 Change customer password ... 43
13.2.3 Service password ... 43

13.3 Counter functional class .. 44
13.3.1 Unit of counters .. 45
13.3.2 Reset counter .. 45

13.4 MEASUREMENT PROCESSING functional class .. 46
13.4.1 Damping .. 47
13.4.2 Low flow cut-off ... 47
13.4.3 Low flow cut-off hysteresis ... 47
13.4.4 Zero point calibration ... 48
13.4.5 Filter .. 48

13.5 Flow functional class .. 49
13.5.1 Volume flow QV unit .. 50
13.5.2 Volume flow lower-range value .. 50
13.5.3 Volume flow upper-range value .. 50
13.5.4 Volume flow limit MIN .. 51
13.5.5 Volume flow limit MAX ... 51
13.5.6 QV limit hysteresis ... 51
13.5.7 Density ... 52
13.5.8 Volume flow LSL (information field) ... 52
13.5.9 Volume flow USL (information field) ... 52

13.6 PULSE OUTPUT functional class .. 53
13.6.1 Pulse or frequency output .. 54
13.6.2 Pulse output unit ... 54
13.6.3 Pulse value ... 55
13.6.4 Pulse width ... 55

13.7 STATUS OUTPUT functional class .. 56
13.7.1 Status output active state ... 56
13.7.2 Status output assignment ... 57

13.8 CURRENT OUTPUT functional class .. 58
13.8.1 Current output 0/4 - 20 mA ... 58
13.8.2 Current output alarm ... 59

13.9 SIMULATION functional class .. 60
13.9.1 Simulation on / off ... 61
13.9.2 Simulation direct / preset value Q ... 61
13.9.3 Simulation measured flow Q ... 61
13.9.4 Direct simulation of outputs .. 62

13.10 SELF-TEST functional class .. 63
13.10.1 Self-test test on / off .. 64
13.10.2 Self-test period (STP) ... 64
13.10.3 Reference calibration on / off ... 64
13.10.4 Reference calibration period (GAP) 65
13.10.5 Empty pipe detection on / off ... 65
13.10.6 Empty pipe detection period .. 65

13.11 SETTINGS TRANSMITTER functional class 66
13.11.1 Language .. 67
13.11.2 Serial number (information field) ... 67
13.11.3 Software version (information field) 67
13.11.4 Mains frequency ... 67
13.11.5 Show system errors ... 68
13.11.6 Reset system error .. 68

13.12 SETTINGS SENSOR functional class 69
13.12.1 Sensor constant C ... 70
13.12.2 Sensor type .. 70
13.12.3 Inside diameter ... 70
13.12.4 Flow direction ... 71
13.12.5 Excitation frequency .. 71

14. UMF2 (B) TRANSMITTER ERROR MESSAGES 72
14.1 Standard operating mode ... 72
14.2 List of error messages .. 73
14.2.1 Display of self-test errors .. 73
14.2.2 Display of system error ... 74
14.2.3 Reset system error ... 74

15. CERTIFICATES AND APPROVALS .. 75
16. STANDARDS AND AUTHORIZATIONS 75
16.1 General standards and directives .. 75
16.2 Electromagnetic compatibility .. 75

17. DECONTAMINATION CERTIFICATE FOR DEVICE CLEANING ... 76
Introduction

I. Shipping and storage; product inspection

Shipping and storage
The device is to be safeguarded against dampness, dirt, impact and damage.

Product inspection
Upon receipt of the product, check the contents of the box and the product particulars against the information on the delivery slip and order form so as to ensure that all ordered components have been supplied. Notify us of any shipping damage immediately upon receipt of the product. Any damage claim received at a later time will not be honored.

II. Warranty

Your flowmeter was manufactured in accordance with the highest quality standards and was thoroughly tested prior to shipment. However, in the event any problem arises with your device, we will be happy to resolve the problem for you as quickly as possible under the terms of the warranty which can be found in the terms and conditions of delivery. Your warranty will only be honored if the device was installed and operated in accordance with the instructions for your device. Any mounting, commissioning and/or maintenance work is to be carried out by qualified and authorized technicians only.

III. Application domain the operating manual

The present manual applies to magnetic-inductive flowmeters series PIT, PITY, PITE and DMH that are operated in conjunction with the UMF2 (B) transmitter.

IV. Measures to be taken before sending your device to the manufacturer for repair

It is important that you do the following before shipping your flowmeter to Heinrichs Messtechnik GmbH for repair:

- Enclose a description of the problem with your device. Describe in as much detail as possible the application and the physical and chemical properties of the fluid.
- Remove any residues from the device and be sure to clean the seal grooves and recesses thoroughly.
 This is particularly important if the fluid is corrosive, toxic, carcinogenic, radioactive or otherwise hazardous.

The operator is liable for any substance removal or personal damage costs arising from inadequate cleaning of a device that is sent for repair.

V. Supplementary operating instructions regarding the HART® interface

For information regarding operation of the transmitter using the HART® hand-held terminal, see "Operation of the UMF2 transmitter using the HART® hand-held terminal."

VI. Operating manual of explosion-proof flowmeters

For installation of the sensor and transmitter within hazardous areas the transmitter UMF2 (B) has no approval.
1. Steps prior to operation

It is essential that you read these operating instructions before installing and operating the device. The device is to be installed and serviced by a qualified technician only. The UMF2 (B) transmitter is to be used exclusively to measure mass and volume flow, as well as liquid and gas density and temperature, in conjunction with a KOBOLD Messring GmbH PIT, PITY, PITE or DMH sensor.

Downloading of the present document from our web site www.kobold.com and printing out this document is allowed only for purposes of using our mass flowmeters. All rights reserved. No instructions, wiring diagrams, and/or supplied software, or any portion thereof, may be produced, stored, in a retrieval system or transmitted by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of KOBOLD Messring GmbH.

Although the materials in the present document were prepared with extreme care, errors cannot be ruled out. Hence, neither the company, the programmer nor the author can be held legally or otherwise responsible for any erroneous information and/or any loss or damage arising from the use of the information enclosed.

KOBOLD Messring GmbH extends no express or implied warranty in regard to the applicability of the present document for any purpose other than that described.

We plan to optimize and improve the products described and in so doing will incorporate not only our own ideas but also, and in particular, any suggestions for improvement made by our customers. If you feel that there is any way in which our products could be improved, please send your suggestions to the following address:

KOBOLD Messring GmbH
Headword: UMF2 (B)

Nordring 22-24
D-65719 Hofheim/Taunus

or:
via fax: +49 6192 23398
via E-mail: info.de@kobold.com

—we reserve the right to change the technical data in this manual in the light of any technical progress that might be made. For updates regarding this product, visit our website at www.kobold.com, where you will also find contact information for the KOBOLD distributor nearest you. For information regarding our own sales operations, contact us at info.de@kobold.com.
1.1 Installation and servicing

The devices described in this manual are to be installed and serviced only by qualified technical personnel such as a qualified KOBOLD electronics engineer or service technician.

Warning

Before servicing the device, it must be completely switched off, and disconnected from all peripheral devices. The technician must also check to ensure that the device is completely off-circuit. Only original replacement parts are to be used.

**KOBOld Messring GmbH accepts no liability for any loss or damage of any kind arising from im-}
proper operation of any product, improper handling or use of any replacement part, or from exter-
nal electrical or mechanical effects, overvoltage or lightning. Any such improper operation, use or}
handling shall automatically invalidate the warranty for the product concerned.

In the event a problem arises with your device, please contact us at one of the following numbers to arrange to have your device repaired:

Phone: +49 6192 299-0
Fax: +49 6192 23398

Contact our customer service department if your device needs repair or if you need assistance in diagnosing a problem with your device.

1.2 Safety advisory for the user

The present document contains the information that you need in order to operate the product described herein properly. The document is intended for use by qualified personnel. This means personnel who are qualified to operate the device described herein safely, including electronics engineers, electrical engineers, or service technicians who are conversant with the safety regulations pertaining to the use of electrical and automated technical devices and with the applicable laws and regulations in their own country.

Such personnel must be authorized by the facility operator to install, commission and service the product described herein, and are to read and understand the contents of the present operating instructions before working with the device.

1.3 Hazard warnings

The purpose of the hazard warnings listed below is to ensure that device operators and maintenance personnel are not injured and that the flowmeter and any devices connected to it are not damaged.

The safety advisories and hazard warnings in the present document that aim to avoid placing operators and maintenance personnel at risk and to avoid material damage are prioritized using the terms listed below, which are defined as follows in regard to these instructions herein and the advisories pertaining to the device itself.

1.3.1 Danger

means that failure to take the prescribed precautions will result in death, severe bodily injury, or substantial material damage.

1.3.2 Warning

means that failure to take the prescribed precautions could result in death, severe bodily injury, or substantial material damage.
1.3.3 Caution
means that the accompanying text contains important information about the product, handling the product or about a section of the documentation that is of particular importance.

1.3.4 Note
means that the accompanying text contains important information about the product, handling the product or about a section of the documentation that is of particular importance.

1.4 Proper use of the device

Warning
The operator is responsible for ensuring that the material used in the sensor and housing is suitable and that such material meets the requirements for the fluid being used and the ambient site conditions. The manufacturer accepts no responsibility in regard to such material and housing.

Warning
In order for the device to perform correctly and safely, it must be shipped, stored, set up, mounted operated and maintained properly.

1.5 Returning your flowmeter for servicing or calibration
Before sending your flowmeter back to us for servicing or calibration, make sure it is completely clean. Any residues of substances that could be hazardous to the environment or human health are to be removed from all crevices, recesses, gaskets, and cavities of the housing before the device is shipped.

Warning
The operator is liable for any loss or damage of any kind, including personal injury, decontamination measures, removal operations and the like that are attributable to inadequate cleaning of the device.

Any device sent in for servicing is to be accompanied by a certificate as specified in Section 17 Decontamination certificate for device cleaning!

The device is to be accompanied by a document describing the problem with the device. Please include in this document the name of a contact person that our technical service department can get in touch with so that we can repair your device as expeditiously as possible and therefore minimize the cost of repairing it.
1.6 Replacement of the transmitter electronics

Before replacing the transmitter electronics, read the safety instructions in Section 1.1 Installation and servicing on page 9.

Warning

Make sure that you abide by the applicable standards and regulations pertaining to electrical devices, device installation and process technology when replacing the transmitter electronics. The highly integrated electronic components in the device carry the risk of ESD hazards and are only protected when installed in the device pursuant to EMC standards.

The exchange of electronic components or board is described in details in chapter 11 Maintenance and repair starting at page 31.

Caution

The complete insert is to be replaced with all of its printed boards (except for the memory chip (DSM)). This is particularly important for the explosion-proof transmitter. The specified precision and interchangeability of the electronics are only guaranteed if the complete insert is replaced.

2. Identification

Manufacturer KOBOLD Messring GmbH
Nordring 22-24
D – 65719 Hofheim/Taunus
Phone: +49 (6192) 299 – 0
Fax: +49 (6192) 23398
Internet: www.kobold.com
e-mail: info.de@kobold.com

Product type Transmitter for magnetic-inductive flowmeters

Product name Transmitter Type UMF2 (B), suitable for PIT, PITY and DMH magnetic-inductive flowmeters

Version no 3.0, dated 19.05.2014
3. Commissioning

3.1 Installation of magnetic-inductive flowmeters
At the installation of the magnetic-inductive flow sensor the instructions and notes of the assembly instructions and operating manuals have to be followed. Also, observe the regulations of grounding, potential equalization and company-internal grounding guidelines.

3.2 Potentials
All outputs are electrically isolated from the auxiliary power, the sensor circuit and from each other. The housing and the interference suppression filters of the power supply are connected to PE.

The electrodes and measuring electronics are related to the potential of the function earth FE of the sensor. FE is not connected to PE, but may be connected with each other in the sensor junction box. If the sensor is grounded by using ground disks (earthing rings), these must in connected with the function earth FE.

At a separate assembly of sensor and transmitter the outer screen of the connecting cable is connected to the transmitter housing and has PE potential. The inner screens of the electrode line are connected to FE inside the junction box of the sensor and to the mass (Gnd) of the transmitters electronic.

Details of all wirings, terminals and drawing can be found in the chapter 10.4 Electrical connection starting at page 27.

3.3 Cathodic protective units
Using a cathodic protective unit to avoid corrosion, which put a voltage to the tube wall, it must be connected to terminal FE. The transmitter boards, control panel and internal switches are on the same potential as FE.

Warning
According to EN 50178:1997 all electrical circuits with protective safety isolation without any protection against contacts must observe the following maximum voltages:
- Maximum AC voltage (root mean square value) 25 V
- Maximum DC voltage 60 V

It is strictly forbidden to connect FE to any higher voltage!
3.4 Zero point calibration

In order to ensure that precise measurements are obtained, zero point calibration is to be realized the first time the device is put into operation and before any regular operations are carried out. Zero point calibration is to be carried out using a fluid.

The zero calibration procedure is as follows:
- Install the sensor as described in the manufacturer’s instructions.
- Check to ensure that the sensor is completely filled with fluid and that there are no gas bubbles in the flow tubes.
- Define the process conditions such as pressure, temperature and density.
- Close a potential shut-off device behind the sensor.
- Operate the transmitter in accordance with the instructions in chapter 13.4.4 Zero point calibration on page 48.
- Make sure that sufficient time is allowed for the electronics to warm up.
- Allowing fluid to flow through the sensor during the zero calibration procedure will skew the zero point and result in false readings.

3.5 Startup conditions

The device is not subject to specific startup conditions. However, pressure surges should be avoided.

3.6 Commissioning the PIT, PITE and PITY flow velocity sensors

In order to be able to calculate the volume flow when using the sensors of the series PIT, PITE and PITY correctly from the measured flow velocity, the installation requirements must be kept regarding position and mounting depth correctly.

If from the manufacturer already during the calibration of the measuring instrument does not take place, the settings must be made as specified in chapter 6.3 Operating the PIT, PITY and PITY flow velocity sensors with UMF2 (B) on page 18 to the correct operation! This applies in particular with exchange or when changes in the tubing cross section of existing installations.
4. Application domain of UMF2 (B) transmitter

The microprocessor controlled UMF2 (B) transmitter (hereinafter referred to as UMF2 (B)) for use with PIT, PITY and DMH sensors is a programmable transmitter that processes measurement data and displays and transmits various types of measurement results.

The UMF2 (B) is communication enabled and supports optional the HART® protocol. The device can be customized using control unit BE3 (option). Although basic configuration settings such as transmitter calibration are realized at the factory, other settings such as those for measurement data processing, analysis, display and output are user definable.

User settings are protected by a user definable password.

Settings that are essential for proper operation of the transmitter in conjunction with the sensor (e.g. calibration and initialization values) are accessible only to service technicians via a password that is not provided to customers.
5. UMF2 (B) transmitter: mode of operation and configuration

5.1 Measuring principle

It was back in 1832 that Faraday suggested utilizing the principle of electrodynamic induction for measuring flow velocities. His experiments in the Thames, though unsuccessful due to superimposed polarization effects, are nonetheless regarded as the first experiment in the field of magnetic-inductive flow measurement. According to Faraday’s law of electromagnetic induction, an electrical field \(E \) is produced in a conductive liquid moving through a magnetic field \(B \) at a velocity \(v \) in accordance with the vector product \(E = [v \times B] \).

Through a meter tube provided with an insulating lining a liquid flows at velocity \(v \) and a flow rate \(Q \), producing a measuring-circuit voltage \(U_m \) at the two electrodes at right angles to the direction of flow. The size of this measuring-circuit voltage is proportional to the mean flow velocity and the volume flow rate.
5.2 System design
The meter consists of a sensor e.g. EP series and a UMF2 (B) transmitter. The device can be used to perform measurements with any liquid, conductive media, providing that the sensor’s material is suitable for the product being used.

The UMF2 (B) transmitter generates the inductive current necessary for the magnetic field and pre-processes the induced voltage at the electrodes.

5.2.1 Standard version
As standard UMF2 (B) has 1 active 0/4 … 20 mA analogue output, 1 passive pulse or frequency output and 1 passive status output.

5.2.2 Control unit BE3
A LCD display with backlight is a standard feature. The display shows measured values as well as diagnostics. With 6 keypads customers are able to configure comfortable and simple the transmitter without any other tool.

5.2.3 Optional equipment

5.2.3.1 HART-Interface
An analog 0/4–20 mA output is a standard feature and digital data transmission via HART® protocol as an optional feature of the device. A retrofit by customer is not possible.

5.2.3.2 Empty pipe detection
Transmitters, which are equipped with a control unit BE3, have an on and off switch able empty pipe detection. The operating reliability depends on the conductivity of the liquid medium and the cleanliness of the electrodes. As bigger the conductivity is, as more reliable operates the empty pipe detection. Insulation coatings on the electrodes surface worse the empty pipe detection.
5.2.4 Data memory chip DSM

The replaceable data memory chip (DSM) is an EEPROM device in DIL-8 housing, located in a socket on the power supply board. It contains all characteristic data of the sensor e.g. sensor constant, version or serial number. Consequently, the memory module is linked to the sensor and in case of a transmitter replacement it has to remain by the sensor!

After replacing the transmitter or its electronics, the DSM will be installed in the new transmitter. After the measuring system has been started, the measuring point will continue working with the characteristic values stored in the DSM. Thus, the DSM offers maximum safety and high comfort when exchanging device components.

At any exchange watch the polarity of the memory chip. Pin 1 is signed by a dot or a notch.

5.2.5 Safety of operation

A comprehensive self-monitoring system ensures maximum safety of operation.

- Potential errors can be reported immediately via the configurable status output. The corresponding error messages will also be displayed on the transmitter display. A failure of the auxiliary power can also be detected via the status output.
- When the auxiliary power fails, all data of the measuring system will remain in the DSM (without backup battery).
- All outputs are electrically isolated from the auxiliary power, the sensor circuit and from each other.
6. Input

6.1 Measured variable
Mass flow rate, temperature, density and volume flow (calculated from the preceding measured variables).

6.2 Measuring range
The measuring range, which varies according to which sensor is used, can be found on the relevant data sheet or rating plate.

6.3 Operating the PIT, PITY and PITY flow velocity sensors with UMF2 (B)
The PIT, PITE and PITY sensors are calibrated for flow velocity. In order to display the measured value in volume flow units, it must be converted using the flow velocity and the inside diameter of the tube. The following parameters must be set at the UMF2 (B):

1. At the functional level Sensor Settings, the sensor type (PIT, PITE or PITY) is set by manufacturer. The dimension of the sensor constants will be automatically set to m/s*mV.
2. Setting of the sensor constants in x.xxx m/s*mV
3. Inside diameter of the tube in xxx mm
4. At the functional class Flow, set the desired unit of volume flow.
5. Using the function Volume Flow Upper-Range Value, set the upper-range value.
7. Output

7.1 Output signal

All signal outputs: Electrically isolated from each other and from ground (PE).

Analog output: 0/4-mA current output, electrically isolated, optional with HART®
 Volume flow or flow speed
 (Using the HART®-protocol the current output has to be assigned to
 volume flow in the mode of 4-20mA)

Pulse output: Pulse duration; default value 50 ms,
 Pulse duration adjustable range is 0,1 ... 2000 ms
 Mark-to-space ratio is 1:1, if the set pulse duration is not reached.

When programming the pulse duration, a plausibility check is carried out. If the selected pulse duration is too long for
 the set upper range value, an error message will be displayed.

\[f_{\text{max}} = 1 \text{ kHz} \]

<table>
<thead>
<tr>
<th>passive via optocoupler</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U = 24 \text{ V})</td>
</tr>
<tr>
<td>(U_{\text{max}} = 30 \text{ V})</td>
</tr>
<tr>
<td>(I_{\text{max}} = 60 \text{ mA})</td>
</tr>
<tr>
<td>(P_{\text{max}} = 1.8 \text{ W})</td>
</tr>
</tbody>
</table>

Pulse value: 1 pulse/unit

The pulse value can be multiplied by a factor between 0.001 -100.0
 (decade increments) of the selected pulse unit (e.g. m³)

Status output: for: forward and reverse flow, MIN flow rate, MAX flow rate or alarm,

<table>
<thead>
<tr>
<th>passive via optocoupler</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U = 24 \text{ V})</td>
</tr>
<tr>
<td>(U_{\text{max}} = 30 \text{ V})</td>
</tr>
<tr>
<td>(I_{\text{max}} = 60 \text{ mA})</td>
</tr>
<tr>
<td>(P_{\text{max}} = 1.8 \text{ W})</td>
</tr>
</tbody>
</table>
7.2 Failure signal
A failure in the meter can be indicated via the current output or the status output. The current output can be set to a failure signal (alarm) of $I < 3.8 \text{ mA}$ or $I > 22 \text{ mA}$.

The status output can be configured as make or break contact.

7.3 Load of the current output
Standard version: \leq 600 Ohm
HART® minimum load $> 250 \text{ Ohm}$

7.4 Damping
Programmable from 0 to 60 seconds

7.5 Low flow cut-off
The low-flow cut-off can be set to values between 0 and 20% using the software. The set value refers to the upper range value. If the measured value is lower than the set volume, the flow rate will set to 0.0 (l/h). This results in the analog output being set to 0/4 mA, and the pulse output will stop generating pulses.

The configurable hysteresis takes effect only one side while exceeding this limit.
8. UMF2 (B) performance characteristics

8.1 Reference conditions
In conformity with IEC 770:
temperature: 20° C, relative humidity: 65%, air pressure: 101,3 kPa

8.2 Measuring tolerance
See characteristic values of the corresponding sensor.

8.3 Repeatability
See characteristic values of the corresponding sensor.

8.4 Influence of ambient temperature
For the pulse output: ± 0.05 % per 10 K.
For the current output: ± 0.1 % per 10 K.

9. UMF2 (B) operating conditions

9.1 Installation conditions
The UMF2 (B) transmitter can be installed directly on the sensor (compact version) observing the operating conditions of the sensor or be mounted separately on the outside (separated version).

Warning:
Additional cable glands:
They are not contained in the scope of supply. The operator is responsible for that fact that according to the enclosure and ignition enclosure certified cable glands or screws are used. The kind of threads is stamped on the rating plate.
At the connection between sensor and transmitter a metalized cable gland must be used for the screen.
(See 10.7 Wiring diagramm for the separate version on page 29)

9.1.1 Compact version
At the compact version the transmitter housing SG2 is mounted on the sensor. Therefore no cable is necessary between sensor and transmitter.

9.1.2 Separate version
The transmitter needs to be mounted separately from the sensor if
- the mounting area is difficult to access
- there is a lack of space
- medium and ambient temperatures are extremely high
- there is strong vibration

Proper installation of cables at high humidity and wetness
The UMF2 (B) transmitter has to be mounted free of vibrations!

Caution:
For the separate version, the minimum permissible conductivity of the medium is determined by the distance between the sensor and the transmitter. The maximum cable length to ensure accuracy is 200 m. For the cable type see section 10.8 Cable specification on page 30.

Caution:
- The electrode cable must be fixed. If the conductivity of the medium is low, cable movements may change the capacity considerably and thus disturb the measuring signal.
- Do not lay the cables close to electrical machines and switching elements.
- Equipotential bonding must be ensured between sensor and transmitter.

Caution:
- Do not connect or disconnect the field coil cable before the primary power of the meter has been disconnected!
9.2 Environmental conditions

9.2.1 Ambient temperature
-20°C Celsius to +60°C Celsius (-4°F to 140°F), below 0°C the readability of the LC display will be limited.

9.2.2 Ambient temperature range
-20°C Celsius to +60°C Celsius (-4°F to 140°F)

In the case of an outdoor installation, the device must be protected against direct solar irradiation with a weather shield.

9.2.3 Storage temperature
-20°C Celsius to +60°C Celsius (-4°F to 140°F)

9.2.4 Degree of protection
SG2b standard housing, IP68 (NEMA 6P).

Caution:
Ingress protection IP 68 is only achieved if suitable and tightly screwed down cable glands or conduits are used. If the cable glands are only tightened manually water may leak into the terminal compartment in the housing.

Danger:
Particular care must be taken if the window in the housing becomes fogged over or discolored because moisture, water or product might seep through the wire sheath into the terminal compartment in the housing!

Warning
Electromagnetic compatibility is only achieved if the electronics housing is closed. Leaving the enclosure open can lead to electromagnetic disturbances.
9.3 Process conditions

9.3.1 Fluid temperature
The data sheet/rating plate of the connected transmitter must be observed. With directly mounted transmitter on the sensor the heat entry must be considered from the process to the transmitter.

9.3.2 State of aggregation
Liquid

9.3.3 Viscosity
No restrictions.
The data sheet/rating plate of the connected transmitter must be observed.

9.3.4 Fluid temperature limit
The data sheet/rating plate of the connected transmitter must be observed.

9.3.5 Flow rate limit
The data sheet/rating plate of the connected transmitter must be observed.

9.3.6 Pressure loss
The data sheet/rating plate of the connected transmitter must be observed.

9.3.7 Empty pipe detection
Transmitters, which are equipped with a control unit BE3, have an on and off switch able empty pipe detection. The operating reliability depends on the conductivity of the liquid medium and the cleanliness of the electrodes.
10. Construction details

10.1 Type of construction / dimensions of separate version

SG2 transmitter housing horizontal mounting

SG2 transmitter housing vertical pipe mounting
SG2 wall mounting

SG2 with terminalbox

Rohr/pipe 2"

1. 2. 3.
10.2 Weight
Aprox. 2,8 kg (separate UMF2 (B) transmitter)

10.3 Material
Housing: aluminum die-cast housing, powder-coated

10.4 Electrical connection
Mains
- 230 V AC +10%, -15%; 50/60 Hz
- 115 V AC; +10%, -15%; 50/60 Hz
- or 24 V DC ±15 %

Power input
- 10 VA

Mains fuse:
- 5x20mm DIN 41571-3

<table>
<thead>
<tr>
<th>Mains voltage</th>
<th>r. Current</th>
<th>rated voltage</th>
<th>breaking capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V AC</td>
<td>100mAT</td>
<td>250V AC</td>
<td>80A / 250V AC</td>
</tr>
<tr>
<td>115 V AV</td>
<td>100mAT</td>
<td>250V AC</td>
<td>80A / 250V AC</td>
</tr>
<tr>
<td>24 V DC</td>
<td>1 AT</td>
<td>250V AC</td>
<td>80A / 250V AC</td>
</tr>
</tbody>
</table>

e. g. Fa. Wickmann series 201

10.5 Process terminals
Terminals located at the rear side of the transmitter’s housing.
10.5.1 Mains and signal terminals

UMF2 (B) mains and signal terminals

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Label</th>
<th>Polarity</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td></td>
<td>Protective conductor</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td></td>
<td>Mains</td>
</tr>
<tr>
<td>3</td>
<td>L</td>
<td></td>
<td>Mains</td>
</tr>
<tr>
<td>4</td>
<td>Pulse</td>
<td>-</td>
<td>Pulse output (passive)</td>
</tr>
<tr>
<td>5</td>
<td>Pulse</td>
<td>+</td>
<td>Pulse output (passive)</td>
</tr>
<tr>
<td>6</td>
<td>Status</td>
<td>-</td>
<td>Status output (passive)</td>
</tr>
<tr>
<td>7</td>
<td>Status</td>
<td>+</td>
<td>Status output (passive)</td>
</tr>
<tr>
<td>8</td>
<td>Current Out.</td>
<td>-</td>
<td>Current output (active)</td>
</tr>
<tr>
<td>9</td>
<td>Current Out.</td>
<td>+</td>
<td>Current output (active)</td>
</tr>
</tbody>
</table>

10.6 HART® connection

A number of options are available for HART® communication. However, for all these options loop resistance must be less than the maximum load specified in Section 7.3 Load of the current output (on page 20). The HART®-Interface is connected via terminals 8 and 9 of the active current output. The minimum load impedance must be 250Ω.
10.7 Wiring diagramm for the separate version

For cable specification see chapter 10.8 on page 30. The outer shield has to be connected to the metalized cable glands at both ends. The inner shields are connected to each other and are plugged into the terminal labeled „Schirm / shield“. They are related to the potential of the function earth FE. (See also section 3.2 “Potentials” at page 12.)

![Wiring Diagram](image)

Note: terminal diagram

Schematic representation of a wiring between flow sensor and remote mounted transmitter. Terminal diagram is always shown in the documentation of flow sensor.

Caution:

Do not connect or disconnect the field coil cable before the primary power of the meter has been disconnected!
10.7.1 UMF2 (B) sensor terminals

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Label</th>
<th>Polarity</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FE</td>
<td></td>
<td>Screen field coil</td>
</tr>
<tr>
<td>2</td>
<td>SP -</td>
<td>-</td>
<td>Field coil</td>
</tr>
<tr>
<td>3</td>
<td>SP +</td>
<td>+</td>
<td>Field coil</td>
</tr>
<tr>
<td>4</td>
<td>FE</td>
<td></td>
<td>Shield / Functional ground</td>
</tr>
<tr>
<td>5</td>
<td>E1</td>
<td></td>
<td>Elektrod 1</td>
</tr>
<tr>
<td>6</td>
<td>E2</td>
<td></td>
<td>Elektrod 2</td>
</tr>
</tbody>
</table>

Observe also the advices in chapter 9.2 Environmental conditions on page 23.

10.8 Cable specification

If the transmitter is mounted separately from the sensor, the following cables must be used:

Elektrode cable and field coil cable as shielded twisted pair. In order to protect the cable from external interference, the twisted-pair wires are covered by an additional, overall shield e.g. LIYCY-CY TP 2x2x0.25 mm².

At cable length more than 10m a wire cross section of at least 0.75mm² is required e.g. SLIYCY-C11Y (2x(2x0.75mm²)).

The outer shield is grounded by means of special EMC-compliant cable glands at both ends of the cable.
11. Maintenance and repair
The transmitter UMF2 (B) is designed as maintenance-free performance. It contains no parts, which have to be replaced or adjusted cyclically.

While commissioning or maintenance, mains power must be switched off. Do not connect or disconnect the wirings between sensor and transmitter while power is on!

11.1 Mains fuse
The mains fuse is located in the terminal compartment. Before exchanging the fuse, the power has to be switched off. Check, if voltage free. The fuse may only be exchanged by the exactly same kind of fuse! (See also 10.4 Electrical connection on page 27.)

11.2 Replacement of terminal board
The terminal board is located in the terminal compartment. Before exchanging the board, the power has to be switched off. Check, if voltage free. The board may only be exchanged by the exactly same kind of board.

To exchange the terminal board, all pluggable connectors have to be released. The board is fixed by 4 screws. To exchange the board, these screws have to be loosened.

Installing the board, the screws have to be secured again by toothed washers. Only after all connectors are plugged in, the power can be switched on again.

11.3 Exchange of transmitter electronic
The transmitter electronic may be exchanged only as complete module. With the exchange of individual components the transmitter is afterwards no longer calibrated neither regarding its measuring characteristics nor its analog outputs. The exchange has to be done as described in the following:

1. Mains power off.
2. Unclamp the 6 pole tab connector in the terminal compartment.
3. Remove the control unit BE2 or decoration foil inside the electronic compartment.
4. Unplug the green connector on the power supply board.
5. Disconnect the sensor’s wires on the power supply board.
6. Screw out all 3 studs consistently and simultaneously.
7. Pull out carefully the electronic boards.
8. The data memory chip (DSM) has to be plug out of the socket and to be placed into the same socket of the new electronic stack.
9. Insert the new electronics and feed the tab connection again into the terminal compartment through the hole in the compartment partitions wall.
10. Reverse to item 1 to 6 of this list assemble the transmitter.
11. Before powering on, check all connectors to be plugged in correctly and all wires and devices are fixed.

After the exchange the transmitter is calibrated by the take-over of the data memory chip (DSM) for the sensor. All totalized counts and settings are taken on.
12. UMF2 (B) control unit

12.1 Introduction
The UMF2 (B) transmitter can be operated depending on equipment by using the control unit BE3 or via a HART® interface.

In the following, transmitter operation and parameterization using control unit BE3 are described. The control unit is located in the electronic compartment and covered by an inspection window.

12.2 Display
Control unit BE3 in the UMF2 (B) has an integrated back lighted, alphanumeric display with two 16-character lines (format 16 x 60 mm). Measurement data and settings can be read directly from this display.

The LCD display is designed be operated at temperatures ranging from $-20 \degree C$ to $+60 \degree C$ (-4° F to 140 °F) without incurring any damage. However, at freezing or near-freezing temperatures, the display becomes slow and readability of the measured values is reduced. At temperatures below $-10 \degree C$ (14 °F), only static values (parameter settings) can be displayed. At temperatures exceeding 60 C° (140 °F), contrast decreases substantially on the LCD and the liquid crystals can dry out.
12.3 Operating modes
The UMF2 (B) can be operated in the following modes:

1. Display mode: In display mode, measured values can be displayed in various combinations and UMF2 (B) settings can also be displayed. Parameter settings cannot be changed in this mode. Display mode is the standard (default) operating mode when the device is switched on.

2. Programming mode: In programming mode, UMF2 (B) parameters can be redefined. After entering the correct password, changes that are permissible for the customer (customer password) or all functions (service password for technicians) can be realized.

12.4 Operation

12.4.1 Operation interface

Functional classes are displayed as headings beneath which displays and parameters are shown in logical groups.

Beneath this is the **menu level**, which lists all measured value displays or the headings for their underlying parameters (**parameter level**).

All functional classes are interlinked horizontally, while all subpoints that are assigned to a functional class are displayed beneath the relevant class.
12.4.2 The keys and their functions

There are six keys to change the settings.

Caution
Do not press these keys with sharp or sharp-edged objects such as pencils or screwdrivers!

Cursor keys: Using the cursor keys, the operator can change numerical values, give YES/NO answers and select parameters. Each key is assigned a symbol in the following table:

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cursor key, arrow to the right</td>
<td>▶</td>
</tr>
<tr>
<td>Cursor key, arrow to the left</td>
<td>◀</td>
</tr>
<tr>
<td>Cursor key, arrow to the top</td>
<td>▲</td>
</tr>
<tr>
<td>Cursor key, arrow to the bottom</td>
<td>▼</td>
</tr>
</tbody>
</table>

Esc key: The “Esc” key allows you to cancel the current action. Pressing Esc moves you to the next higher level where the operator can repeat the action. Pressing Esc twice moves you directly to the MEASURED VALUES functional class.

ENTER key: Pressing ✳ (ENTER key) moves you from the menu level to the parameter level. You confirm all entries with the ✳ key.
12.4.3 Functional classes, functions and parameters

Functional classes are written in all upper case letters (headings). The functions beneath each functional class are written in upper and lower case.

The various functional classes and functions are describes in Section 13 „UMF2 (B) transmitter functions“ starting on page 37.

The lower lines contains the following elements:

- Informational texts,
- YES/NO answers
- Alternative values
- Numerical values (with dimensions, if applicable)
- Error messages.

If the user attempts to modify values for any of these parameters without entering the required password, the message “Access denied” will be displayed (see also 12.3 Operating modes on page 33 and 12.4.3.3 Passwords on page 36)

12.4.3.1 Selection window / make a selection

In the selection window, the first line of the LCD always contains the heading, while the second line displays the current setting. This setting is shown in square brackets if the system is in Programming mode.

```
Function name
[Selection]
```

In Programming mode (see 12.3 Operating modes on page 33), i.e. after a password has been entered (see siehe 12.4.3.3 Passwords page 36 and 13.2 PASSWORD functional class page 42), the operator can navigate to the desired setting by using the key or the key and the operator can then confirm your selection by pressing (ENTER key). To retain the current setting, press Esc.
12.4.3.2 Input window / modify a value

In the input window, the first line of the LCD always shows the heading, while the second line shows the current setting.

Example:

![Function name -4.567 Unit](example.png)

These modifications can only be made in Programming mode (refer to 12.3 Operating modes on page 33), which means that a correct password (see 12.4.3.3 Passwords page 36 and 13.2 PASSWORD functional class page 42) must be entered. To move the cursor from one decimal place to the next, use the `<` or `>` keys. To increase the value of the decimal place just under the cursor by “1,” use the `▲` key, and use `▼` key to lower the number by 1. To change the minus and plus sign, place the cursor in front of the first digit. To confirm and apply the change, press `~i`. To retain the current value, press Esc.

12.4.3.3 Passwords

Programming mode is password protected. The customer password allows all changes to be made that are permissible for customers. This password can be changed when the device is first put into operation. Such changes should be kept in a safe place.

The UMF2 (B) customer password in the device when delivered is 0002.

The service password allows for modification of all UMF2 (B) functions. This password is not given to customers.

For further information on customer passwords, see Section 13.2 PASSWORD functional class on page 42.
13. UMF2 (B) transmitter functions
The software functions of the UMC3 transmitter are divided into functional classes, are arrayed in a circle and can be navigated by using the ▼ or ▲ cursor keys. To go back to your starting point (the MEASURED VALUES functional class) press Esc.

In the following, all software functions that can be accessed using the customer password are described. Functions that are only accessible to the vendor (service functions) are not described in the present document.
13.1 MEASURED VALUES functional class

The MEASURED VALUES functional class contains all functions for displaying the measured values.
13.1.1 Volume flow rate

If you select the function “volume flow,” the following will be displayed (example):

<table>
<thead>
<tr>
<th>Volume flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0 l/h</td>
</tr>
</tbody>
</table>

The LCD shows the current volume flow rate. You define the display unit in the functional class FLOW using the function “volume flow unit”.

13.1.2 Forward flow counter 1

Forward flow counter 1 and forward flow counter 2 are independent counters that can also be reset separately. With counter 1, for example, you can measure the yearly or monthly volume. If you select the function “forward flow counter 1”, the following will be displayed (example):

<table>
<thead>
<tr>
<th>Counter 1 forw.</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 000001.0 l</td>
</tr>
</tbody>
</table>

The LCD shows the current value of forward flow counter 1. You define the display unit in the functional class COUNTERS using the function “unit of counter”.

13.1.3 Forward flow counter 2

The function is identical with the function of forward flow counter 1. For example, forward flow counter 2 can be used as a daily counter. If you select the function “forward flow counter 2”, the following will be displayed (example):

<table>
<thead>
<tr>
<th>Counter 2 forw.</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 000001.0 l</td>
</tr>
</tbody>
</table>

The LCD shows the current value of forward flow counter 2. You define the display unit in the functional class COUNTERS using the function “unit of counter”.

13.1.4 Reverse flow counter

If you select the function “reverse flow counter,” the following will be displayed (example):

<table>
<thead>
<tr>
<th>Counter reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000.0 l</td>
</tr>
</tbody>
</table>

The LCD shows the current value of the reverse flow counter. You define the display unit in the functional class COUNTERS using the function “unit of counter”.

13.1.5 Flow velocity

If you select the function “flow velocity,” the following will be displayed (example):

<table>
<thead>
<tr>
<th>flow velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 m/s</td>
</tr>
</tbody>
</table>

The LCD shows the current value of the mean flow velocity of the medium. The display unit is always meters per second (m/s). The mean velocity is calculated from the measured volume flow and the flow area of the meter tube. In order to calculate the flow area of the meter tube, enter the inside diameter of the meter tube. To do so, use the “inside diameter” function in the functional class SETTINGS SENSOR + UMF.

13.1.6 Relative flow rate

The relative flow rate is the percentage ratio of the (current) volume flow and the entered upper range value of the volume flow. You set this upper range value in the functional class FLOW using the function “volume flow QV URV.”

The calculation of the relative flow rate is based on the following formula:

\[
\text{relative flow rate} = 100\% \times \frac{Q_{\text{abs}} - \text{lower range limit}}{(\text{upper range limit} - \text{lower range limit})}
\]

If you select the function “relative flow,” the following will be displayed (example):

<table>
<thead>
<tr>
<th>Relative flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.3%</td>
</tr>
</tbody>
</table>

13.1.7 QV + Forward flow counter

If the function “QV+ forward flow counter 1” is selected, in the first line the actual flow will be displayed:

| XXX.X | XXX.XX l/h |

In the second line the LCD shows the current value of the forward flow counter 1. The displayed unit is defined in the functional class FLOW using the function “volume flow unit”. The unit of the counter is defined in the functional class COUNTER using the function “counter unit”.

13.1.8 QV + Forward flow counter 2

If the function “QV+ forward flow counter 2” is selected, in the first line the content of the actual flow will be displayed:

| XXX.X | XXX.XX l/h |

In the second line the LCD shows the current value of the forward flow counter 2. The displayed unit is defined in the functional class FLOW using the function “volume flow unit”. The unit of the counter is defined in the functional class COUNTER using the function “counter unit”.
13.1.9 QV + flow velocity

If the function “QV + flow velocity” is selected, the following will be displayed:

<table>
<thead>
<tr>
<th>XXX.X l/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX.X m/s</td>
</tr>
</tbody>
</table>

The first line shows the actual volume flow rate and the second line the mean flow velocity of the medium.

13.1.10 Display mode during startup

By choosing the Display mode during startup function the operator can define the default display. After the operator switched the device on and did not touch any keys for a longer period of time, the defined default display will be shown.

<table>
<thead>
<tr>
<th>Display mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>[QV]</td>
</tr>
</tbody>
</table>

According to the description in Section 12.4.3.1 “Selection window / make a selection”, one of the following default displays can be selected.

- QV (volume flow rate),
- Counter 1 forward flow,
- Counter 2 forward flow,
- Counter reverse flow,
- Velocity,
- QVabs + QVrel,
- QV + counter 1,
- QV + counter 2,
- QV + velocity,
- and raw values.

13.1.11 Raw values

The “Raw value display” supports fault diagnostics and trouble shooting. Please inform our service department about the clear text error messages and contents of the “Raw value display”.

<table>
<thead>
<tr>
<th>xxx.xxx</th>
<th>ggo00</th>
</tr>
</thead>
<tbody>
<tr>
<td>iiiii</td>
<td>gguuu</td>
</tr>
</tbody>
</table>

The displayed values are decimals and have the following meaning:

- xxx.xxx: Is a gauge for the measured electrode voltage.
- ggo00: Is a gauge for the upper value of the reference calibration.
- iiiii: Is a gauge for the current to generate the field coil’s magnetic field.
- gguuu: Is a gauge for the lower value of the reference calibration.
13.2 PASSWORD functional class
The PASSWORD functional class is comprised of the functions for entering and changing the customer password and entering the service password. To cancel the current action, press Esc.

13.2.1 Customer-password

After selecting the Customer password function and pressing ⊲, the following will be displayed:

Password?
0000

According to the description in Section 12.4.3.2 „Input window / modify a value“, the password can be changed.

If the entered password is correct, the following message will be displayed:

Password
valid

If the entered password is not correct, the following message will be displayed:

Password
invalid

The customer password in the device when delivered is 0002.
A valid customer password allows all software parameter changes to be made that are permissible for customers. After the operator switched the device off or did not touch any keys for about 15 minutes, the authorization to change settings related to password entry will automatically be canceled. If the operator does not enter a valid password, all settings can be displayed but not changed. Parameter changes via HART may be carried out any time without entering password.

13.2.2 Change customer password

After entering a valid customer password, you may change the existing password and enter a new one. After selecting the *Change customer password* function and pressing ‹‹‘, the following will be displayed.

![Enter New password](image)

According to the description in Section 12.4.3.2 "Input window / modify a value" the current value can be changed.

Press ‹‹‘ to confirm and save the new password. Make sure that you entered the desired password!

A copy of the password should be kept in a safe place. Reactivation of a transmitter at the vendor's site due to a lost password is not part of our warranty!

13.2.3 Service password

You do not need the service password for setting the functions necessary for operation.

The service password is reserved for service technicians and not provided to customers. Correct settings are essential for proper operation of the device (e.g. parameterization and calibration values).
13.3 Counter functional class

The COUNTERS functional class is comprised of the following functions:

To change the current settings, enter the customer password. Otherwise, the settings can only be displayed but not changed. To cancel the current action, press Esc.
13.3.1 Unit of counters

After choosing the *Unit of counters* function and pressing \[\], the current forward and reverse counter unit will be displayed:

```
Accumulation of:
[kg]
```

According to the description in Section 12.4.3.1 Selection window / make a selection, one of the following units can be selected.

- Volume units: \(\text{m}^3\) and \(l\), as well as \(\text{USG, UKG, ft}^3\) or
- Mass units: \(\text{kg and t}\).

When the unit is changed, the counters will be reset to 0.00 automatically.

The mass unit only makes sense if density factor has been programmed for mass flow calculation. Press \[\] to confirm and save the selection. Forward and reverse counters will now show the selected unit.

13.3.2 Reset counter

The transducer UMF2 (B) has 3 independent totalizing counters. Counter 1 and Counter 2 for forward flow and a reverse flow counter. Each of them can be reset individually on the initial value 0.00.

To reset one of the totalizing counters, you definitely need to toggle to [yes].

```
Reset counter
[no]
```

According to the description in Section 12.4.3.1 Selection window / make a selection, “yes” or “no” can be selected. By pressing Esc or toggling to [no] the operator can cancel the current action without changing the counter readings.
13.4 MEASUREMENT PROCESSING functional class

The MEASUREMENT PROCESSING functional class is comprised of all functions that affect the processing of the measured values.

To change the current settings, enter the customer password. Otherwise, the settings can only be displayed but not changed. To cancel the current action, press Esc.
13.4.1 Damping

The damping value is intended to dampen abrupt flow rate changes or disturbances. It affects the measured value display and the current and pulse outputs. It can be set in intervals of 1 second from 1 to 60 seconds. After choosing the Damping value function and pressing \(\downarrow\), the following selection field will be displayed:

\[
\text{Damping} \\
03 \text{ s}
\]

The current damping value will be displayed. According to the description in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed. After setting the new damping value, press \(\downarrow\) to confirm your entry.

13.4.2 Low flow cut-off

The value for low flow cut-off (low flow volume) is a limiting value stated as a percentage that relates to the upper-range value of the flow rate. If the volume drops below this value (e.g. leakage), the displayed value and the current outputs will be set to “ZERO.” The value for low flow cut-off can be set from 0 to 20 % in 1-percent increments. After choosing the Low flow cut-off function and pressing \(\downarrow\), the following selection field will be displayed:

\[
\text{Low flow cut-off} \\
00 \%
\]

The low flow volume will be displayed. According to the description in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed. After setting the new low flow volume, you confirm your entry with \(\downarrow\).

13.4.3 Low flow cut-off hysteresis

The hysteresis of the low flow volume is the flow rate expressed as a percentage of the upper range value by which the volume must fall below or surpass the set low flow volume in order to activate or deactivate the function. The hysteresis of the low flow volume can be set in 1-percent increments from 0 to 10 %. After selecting the Low flow cut-off hysteresis function and pressing \(\downarrow\), the following selection field will be displayed:

\[
\text{Low flow cut-off hysteresis} \\
00 \%
\]

The current hysteresis will be displayed. According to the description in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed. After setting the new hysteresis value, you confirm your entry with \(\downarrow\).
13.4.4 Zero point calibration

Using the Zero point calibration function the operator can recalibrate the zero point of your meter in the measuring system. Zero point calibration is to be realized after any installation procedure or after any type of work has been performed on in the pipes near the sensor. Refer also Section 3.4 Zero point calibration auf Seite 13.

CAUTION:
This function may only be carried out if it is certain that the fluid in the sensor is not flowing. Otherwise, the flow rates measured subsequently will be incorrect. The sensor must be completely filled with fluid. A partially filled sensor or air bubbles will lead to an incorrect zero point calibration.

After choosing the Zero point calibration function and pressing .J, the current remaining flow will be displayed:

0.00 l/h
cal.? [no]

According to the description in Section 12.4.3.1 Selection window / make a selection, “yes” or “no” can be selected. By pressing Esc or toggling to [no] the operator can cancel the current action. Enter [yes] to have the zero point recalibrated.

13.4.5 Filter

For a noise reduction of the actual readings a signal filter can be used. Following settings are available:
- none
- weak
- mid (standard factory setting)
- strong

Selecting "weak" or "mid" influences the dynamics of the actual readings not or just very less. The setting of damping time (see section 13.4.1 “Damping” at page 47 above) determines the dynamic behaviour of sensor and transmitter. Filter “strong” operates as an intense low pass filter to reduce the noise of the actual readings. Then if setting the damping time shorter than 3 seconds, the low pass filter determines the dynamic behavior to actual reading’s variations.

According to the description in Section 12.4.3.1 Selection window / make a selection, noise filter type can be selected.
13.5 Flow functional class

The FLOW functional class is comprised of functions that affect lower- and upper-range values and the processing of the measured flow rates. In Programming mode (see 12.3 Operating modes), i.e. after a password has been entered (see 12.4.3.3 Passwords, 13.2 PASSWORD functional class), the operator can change the settings regarding flow.

To change the current settings, enter the customer password. Otherwise, the settings can only be displayed but not changed. To cancel the current action, press Esc.
13.5.1 Volume flow QV unit

Using this function, the operator can define the physical unit for all display functions, limit values and the upper-range value of volume flow. After choosing the **Volume flow QV unit** function and pressing , the following selection field will be displayed:

![Volume flow QV in l/h]

According to the description in Section 12.4.3.1 Selection window / make a selection, one of the following units can be selected:

- l/h, l/min, l/s
- m³/h, m³/min, m³/s
- USG/h, USG/min, USG/s,
- UKG/h, UKG/min, UKG/s,
- Kg/h, t/h,
- ft³/s, MGD (Mega US Gallons / day).

Press \(\downarrow \) to confirm and save the selection.

13.5.2 Volume flow lower-range value

This function allows the operator to set the lower-range value for volume flow. The lower-range value takes on the unit defined using the **Volume flow unit** function. The lower-range value will scale the current and frequency outputs assigned to volume flow. After choosing the **Volume flow lower-range value** function and pressing , the following selection field will be displayed:

![QV LRV = 0% XXXXX.XX l/h]

The current lower-range value for volume flow will be displayed. According to the description in Section 12.4.3.2 Input window / modify a value, the current value can be changed.

13.5.3 Volume flow upper-range value

This function allows the operator to set the upper-range value for volume flow. The upper-range value takes on the unit defined using the **Volume flow unit** function. The upper-range value will scale the current and frequency outputs assigned to volume flow. After choosing the **Volume flow upper-range value** function and pressing , the following selection field will be displayed:

![QV URV = 0% XXXXX.XX l/h]

The current upper-range value for volume flow will be displayed. According to the description in Section 12.4.3.2 Input window / modify a value, the current value can be changed.
13.5.4 Volume flow limit MIN

The MIN limiting value for volume flow can be evaluated via the status output. You enter the value as a percentage of the set upper-range value. If the volume flow is lower than that limit value, the status output will be set in case the corresponding assignment has been made. If the alarm function has also been activated for the current output, the applied current will change to < 3.2 mA or > 20.5 mA / 22 mA. After choosing the **Volume flow limit MIN** function and pressing ,, the following selection field will be displayed:

| Volume flow limit | MIN = 10 % |

The current MIN upper-range value for volume flow will be displayed. According to the description in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed.

13.5.5 Volume flow limit MAX

The MAX limiting value for volume flow can be evaluated via the status output. You enter the value as a percentage of the set upper-range value. If the volume flow surpasses this limit value, the status output will be set in case the corresponding assignment has been made. If the alarm function has also been activated for the current output, the applied current will change to < 3.2 mA or > 20.5 mA / 22 mA. After choosing the **Volume flow limit MAX** function and pressing ,, the following selection field will be displayed:

| Volume flow limit | MAX = 90 % |

The current MAX upper-range value for volume flow will be displayed. According to the description in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed.

13.5.6 QV limit hysteresis

The hysteresis of the QV limiting values is the flow rate in percent based on the upper-range value and indicates the value which must fall below or surpass the set limiting values in order to activate or deactivate the function. The hysteresis of the QV limiting values can be set in 1-percent increments from 0 to 10 %. After choosing the **QV limit hysteresis** function and pressing ,, the following selection field will be displayed:

| QV limit | Hysteresis 00 % |

The current hysteresis value will be displayed. According to the description in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed.
13.5.7 Density

If a mass unit in kg or t is used as flow unit (13.5.1 Volume flow QV unit), the density of the medium must be entered in the unit of g/l. Using the entered density value, the mass flow is calculated from the volume flow measurement.

After choosing the Density function and pressing ↵, the following selection field will be displayed:

| Density | 998.2 g/l |

The current density value will be displayed. According to the description in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed.

The value of the density is not measured. It is a parameter.

13.5.8 Volume flow LSL (information field)

This value represents the minimum lower range value based on the inside diameter of the sensor. This value is normally set for a flow velocity of 0.25 m/s.

| QV LSL | XX.XXX l/h |

13.5.9 Volume flow USL (information field)

This value represents the maximum upper range value based on the inside diameter of the sensor. This value is normally set for a flow velocity of 11 m/s.

| QV USL | XX.XXX l/h |
13.6 PULSE OUTPUT functional class

The PULSE OUTPUT functional class is comprised of the functions regarding the pulse output.
13.6.1 Pulse or frequency output

The **Pulse or frequency output** function allows the operator to define whether pulses per represent a unit of flow or a frequency between 0 and 1 kHz that represents an analog output over the measuring range.

After selecting the frequency setting, the maximum frequency of 1 kHz will be generated when the upper-range value for mass or volume flow is reached (depending on the selected pulse unit). If the flow rate falls below the low flow volume, the actual frequency is 0 Hz.

After selecting the pulse setting, pulse value and unit the transmitter will determine the number of pulses per flow volume. When choosing a combination of these settings that cannot be fulfilled in real time for the upper-range value (e.g. the number of pulses per time unit cannot be generated due to the pulse width which is too large), the error message "Pulse width too large" or "Inconsistent parameter" will be displayed.

Press ↵ to display the current setting:

<table>
<thead>
<tr>
<th>Output of [Pulses]</th>
</tr>
</thead>
</table>

According to the description in Section 12.4.3.1 Selection window / make a selection, the operator can toggle between frequency and pulse output (default setting).

13.6.2 Pulse output unit

This function allows the operator to define the unit to be counted. After selecting the **Pulse output unit** function, press ↵ to display the following selection field:

<table>
<thead>
<tr>
<th>Accumulation of 1.0 l</th>
</tr>
</thead>
</table>

The current value will be displayed. As mentioned in Section 12.4.3.1 Selection window / make a selection, the operator can choose between the following units:

- **Mass units:**
 - kg, t

- **Volume units:**
 - m³, l, USG, UKG, ft³.
13.6.3 Pulse value

This function allows the operator to define how many pulses will be output per unit counted. After selecting the *Pulse value* function, press ↓ to display the current unit:

| 1 pulse per |
| [1.0] unit |

As mentioned in Section 12.4.3.1 Selection window / make a selection, the operator can choose between the following pulse values:

Values: 0.001, 0.01, 0.1, 1.0, 10.0, 100.0

13.6.4 Pulse width

This function allows the operator to change the width of the output pulse to be output. If the pulse width is too large for the actual pulse number, it will be reduced automatically. In this case the warning “Pulse output saturated” will be displayed.

After selecting the *Pulse width* function, press ↓ to display the following selection field:

| Pulse width |
| 0050.0 ms |

The current pulse width will be displayed. As mentioned in Section 12.4.3.2 „Input window / modify a value“, the operator can change the current value.

The maximum output frequency can be calculated from the following formula:

\[f = \frac{1}{2 \times \text{pulse width[ms]}} \leq 000 \text{ Hz} \]

If connecting to electrical counter relays, we recommend pulse widths greater than 4 ms; for electromechanical counter relays the preset value should be 50 ms.
13.7 STATUS OUTPUT functional class

The functional class OUTPUT is comprised of the functions for setting the status output.

13.7.1 Status output active state

The status output can be compared to an electrical relay that can function as make or break contact. For safety-relevant applications, the operator will choose the break contact setting so that a power failure or failure of the electronics can be detected like an alarm. In standard applications, the output is used as make contact.

The Status output active state function allows the operator to define the behavior of the status output.

As mentioned in Section 12.4.3.1 Selection window / make a selection, the operator can choose between the following settings:

- closed
- open.
13.7.2 Status output assignment

This function allows the operator to define to which event the status output is to be assigned. The most general assignment is the reverse flow assignment.

After selecting the Status output assignment function, press ⊙ to display the current assignment.

Output assigned to
[Reverse flow]

As mentioned in Section 12.4.3.1 Selection window / make a selection, the operator can choose between the following settings:

- Flow direction recognition
 - Forward flow
 - Reverse flow
- Limiting values:
 - MIN QV
 - MAX QV
- All limiting values and error detection
 - Alarm.
13.8 CURRENT OUTPUT functional class
The CURRENT OUTPUT functional class allows the operator to perform the settings for the current outputs of the transmitter.

The current output is always assigned to volume flow.

13.8.1 Current output 0/4 - 20 mA

The Current output 0/4 to 20 mA function allows the operator to define the range in which the current output is to be operated. Within the range from 0 to 21.6 mA (= 0 ... 110 %) HART® communication is not possible. The range from 4 to 20.5 mA follows the NAMUR recommendation and covers the range from 0 to 104 % of the measuring range. The standard range from 4 to 21.6 mA allows for a control of the measuring range of up to 110 %.

Press ▼ to display the current setting.

As mentioned in Section 12.4.3.1 Selection window / make a selection, the operator can choose between the following settings:

- 0 – 21.6 mA
- 4 – 21.6 mA
- 4 – 20.5 mA

Using HART: must be set to 4 - 20,5mA or 4 - 21,5mA
13.8.2 Current output alarm

This function allows the operator to define the state taken on by the current output when a state of alarm is detected. This information can be analyzed in the control system. Press \[\text{Alarm}\] to display the current setting:

As mentioned in Section 12.4.3.1 Selection window / make a selection, the operator can choose between the following settings:

- not used: no alarm function
- > 22 mA: current rise in the case of an alarm
- < 3.8 mA: current reduction in the case of an alarm
13.9 SIMULATION functional class

The functional class SIMULATION is comprised of the functions for simulating the outputs. If simulation is activated, all output signals will be generated based on the selected type of simulation. The peripherals connected to the device can be tested without a flowing product.

Simulation will be deactivated automatically if the operator switched the device off or did not touch any control unit keys for about 10 minutes. Simulation can also be activated and controlled via HART® commands.
13.9.1 Simulation on / off

The Simulation on/off function allows the operator to activate or deactivate simulation. If simulation is activated, all output signals will be generated based on the selected type of simulation. The peripherals connected to the device can be tested without a flowing product. Press \(\text{Simulation } [\text{on/off}] \) to display the current status.

As mentioned in Section 12.4.3.1 Selection window / make a selection, the operator toggles between the "on" and "off."

Simulation will be deactivated automatically if the operator switched the device off or did not touch any control unit keys for about 10 minutes.

13.9.2 Simulation direct / preset value Q

This function allows the operator to define whether simulation is comprised of the measurement of the volume flow or whether the outputs will be set directly. Press \(\text{Simulation } [\text{direct}] \) to display the selected type of simulation.

As mentioned in Section 12.4.3.1 Selection window / make a selection, the operator can choose between the following settings:

- Direct pulse and current outputs are programmed directly
- \(QV_{\text{abs}} \) a measurement is simulated

If "direct" simulation is activated, any output will perform based on the settings described in Sections 13.9.4.1 Status output simulation to 13.9.4.3 Current output simulation. It is therefore recommended that the settings be defined before starting simulation. They can then be purposefully changed during simulation.

Simulation will be deactivated automatically if the operator switched the device off or did not touch any control unit keys for about 10 minutes.

13.9.3 Simulation measured flow Q

If the operator selected the setting “\(QV_{\text{abs}} \)” described in Section 13.9.2 on page 61, the following settings of a volume flow will affect the output behavior during measured value simulation.

In order to simulate volume flow, the operator can define a “measured value.” The flow rates will be simulated in both directions. All outputs will perform based on the simulated measured value.

Preset \(QV_{\text{abs}} \)

\[\pm 900.0 \text{ l/h} \]

The simulation value is entered as described in Section 12.4.3.2 “Input window / modify a value”.
13.9.4 Direct simulation of outputs

If the operator selected the setting “Direct simulation” described in Section 13.9.2 „Simulation direct“ on page 61, the following 3 possible settings will affect the output. All outputs are simulated at the same time by these settings.

13.9.4.1 Status output simulation
The Status output simulation function allows the operator to purposefully activate the status output. Press ↓ to display the current state.

<table>
<thead>
<tr>
<th>Status output</th>
</tr>
</thead>
<tbody>
<tr>
<td>[off]</td>
</tr>
</tbody>
</table>

As mentioned in Section 12.4.3.1 Selection window / make a selection, the operator can toggle between “on“ and “off.

13.9.4.2 Pulse output simulation
The Pulse output simulation function allows the operator to define a frequency to be assigned to the pulse output. After selecting this function and pressing ↓, the following selection field will be displayed:

<table>
<thead>
<tr>
<th>Set frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0210.0 Hz</td>
</tr>
</tbody>
</table>

This field shows the current frequency. As mentioned in Section 12.4.3.2 „Input window / modify a value“, the definable frequency ranges from 6 Hz to 1100 Hz.

13.9.4.3 Current output simulation
This function allows the operator to define a current for current interface 1. Press ↓ to display the set current.

<table>
<thead>
<tr>
<th>Set I1</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1 = 10.50 mA</td>
</tr>
</tbody>
</table>

As mentioned in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed.
13.10 SELF-TEST functional class

The SELF-TEST function class is comprised of the functions relating to the self-test of the sensor. The diagnostic functions of the transmitter, which monitor the proper functioning of the electronics and the software, are always active and cannot be switched off. The excitation current can be monitored in addition.
13.10.1 Self-test test on / off

The *Self-test on/off* function allows the operator to activate or deactivate the monitoring function of the field coil current.

```
Self-test
[off]
```

According to the description in Section 12.4.3.1 Selection window / make a selection, the operator can toggle between "on" and "off." The standard factory setting is "on."

The measurement is intended to suppress temperature dependences of the transmitter. During the sampling time of 0.5 seconds, the transmitter is offline; the last measured value will be displayed at the signal outputs.

13.10.2 Self-test period (STP)

With the help of this function, you set the time period after which the field coil current will be measured periodically. You can set periods between 35 seconds and 999 seconds.

```
Self-test
STP = 040 s
```

This field shows the current self-test period. As mentioned in Section 12.4.3.2 "Input window / modify a value", the current value can be changed.

13.10.3 Reference calibration on / off

With the help of the function *Reference calibration on/off*, the periodic recalibration of the transmitter can be activated or deactivated. The objectives of the function are periodic self-monitoring and an increase in long-term stability. During the automatic reference calibration of 30 seconds, the transmitter is offline; the last measured value will be displayed at the signal outputs. After choosing this function and pressing .J, the following selection field will be displayed:

```
Reference calibration
[off]
```

According to the description in Section 12.4.3.1 Selection window / make a selection, the operator can toggle between "on" and "off." If switched on, the reference calibration will be done periodically.
13.10.4 Reference calibration period (GAP)

The function Reference calibration period is a multiplication of the function "self-test period". With the help of this function, you define after how many STP's the reference calibration is to be performed.

![Reference calibration GAP = 540 * STP]

This field shows the current reference calibration period. As mentioned in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed.

Example: The “self-test period” has been set to 40 seconds; a reference calibration is to be carried out every 6 hours.

GAP = 6 * 3600s / 40s = 540

13.10.5 Empty pipe detection on / off

With the help of the function Empty pipe detection on / off, continuous empty-pipe detection can be activated or deactivated. After selecting this function and pressing „„, the following selection field will be displayed:

![Empty pipe detection [off]]

According to the description in Section 12.4.3.1 Selection window / make a selection, the operator can toggle between “on” and “off.” If switched on, the empty pipe detection will be done periodically.

13.10.6 Empty pipe detection period

With the help of the function Empty pipe detection period, the time after which the detection will be carried out can be set. When entered 00 minutes, the detection will be performed continuously. After choosing this function and pressing „„, the following selection field will be displayed:

![Leerrohrprüfung alle 10 Min]

This field shows the current empty pipe detection period. As mentioned in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed.
13.11 SETTINGS TRANSMITTER functional class
This functional class is comprised of the general settings affecting the behavior of the transmitter.
13.11.1 Language
Two languages are available in the control unit BE3: German and English.

As mentioned in Section 12.4.3.1 Selection window / make a selection, the operator can toggle between these languages:
- German,
- English.

13.11.2 Serial number (information field)
With the help of the Serial number function, the transmitter is assigned to an order. This number provides access to internal vendor data if the device needs servicing. The serial number is printed on the rating plate of the transmitter. After selecting this function, press „„ to display the following information field:

```
Serial number:
100683
```

This entry should never be changed so as to ensure that the sensor, the transmitter and the documents created within quality management are assigned correctly.

13.11.3 Software version (information field)
After selecting this function, the version of the transmitter software will be shown (example: 1.06):

```
Version
002.16
```

13.11.4 Mains frequency
In order to ensure with mains frequency (50 Hz or 60 Hz per second) optimal interference suppression, the input of the frequency is necessary. The standard setting is 50 Hz. After choosing the function Mains frequency and pressing „„, the following selection field will be displayed:

```
Mains frequency
[50 Hz]
```

The selection is confirmed and taken over with the „„-key.
13.11.5 Show system errors

With the help of this function, you can show the error code of the system errors that have occurred.

The integrated diagnostic system of the UMF2 (B) transmitter distinguishes between two types of errors (see also Section 14 „UMF2 (B) transmitter error messages”). Self-test errors such as problems with a sensor line or inconsistent parameter inputs are displayed as textual error messages. Once the error has been eliminated, the message automatically disappears from the display. For further information, see Section 14.2.1 „Display of self-test errors”.

Errors that are attributable to system memory or software, division by zero, or a fault in the electronics unit are designated as system errors. These error messages are not reset automatically after the error (usually of very brief duration) is eliminated.

13.11.6 Reset system error

Before resetting a system error manually, we advise that you contact our technical service department. For further information, see Section 14.2.2 „Display of system error”.

Reset error
[no]

If the operator toggles to [yes] and confirms the action according to the description in Section 12.4.3.1 Selection window / make a selection, the error messages disappears from the display. If the message reappears shortly after, do contact our technical service department.
13.12 SETTINGS SENSOR functional class
This functional class is comprised of the general settings affecting the behavior of the sensor.
13.12.1 Sensor constant C

The sensor constant C is the calibration value of the sensor connected to the transmitter. The calibration value must be entered in the UMF2 (B) transmitter to ensure a correct measurement. The constant will be defined after the calibration of the meters and can be found on the rating plate of the sensor. After selecting the Sensor constant function, press „↓“ to display the current setting.

<table>
<thead>
<tr>
<th>Sensor constant /mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>01234.56 l/h</td>
</tr>
</tbody>
</table>

As mentioned in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed.

CAUTION:
Changing sensor constant C to a value that differs from the value on the rating plate of the sensor connected to the flowmeter will result in false readings!

Note:
The sensor constant must always be preceded by a plus or minus sign. The delivery default setting is a plus sign. If inlet and outlet section are interchanged when the device is installed (the flow direction is indicated by an arrow on the sensor), the transmitter will display a “forward flow” negative measurement value. If the (plus or minus) sign of the sensor constant is then changed without changing the actual value, a plus sign will again be displayed. No changes need be made in the disposition of the electrical connections (wires).

13.12.2 Sensor type

The function Sensor type contains the type of the sensor with which the transmitter has been delivered. The distinction is necessary and required because the flow rate measurement uses different calculations depending on the type of the used sensor. After selecting this function, press „↓“ to display the current setting.

<table>
<thead>
<tr>
<th>Sensor type</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EP(Y)]</td>
</tr>
</tbody>
</table>

This type code can be found on the sensor rating plate. This setting is defined by the vendor when the device is first put into operation at the factory. It should only be changed if the transmitter is mounted onto another sensor.

13.12.3 Inside diameter

The inside diameter of the sensor connected to the transmitter is necessary for calculating the mean flow velocity. The inside diameter must be checked in the UMF2 (B) transmitter (on mm exact) to ensure a correct measurement. After choosing the function “inside diameter” and pressing „↓“, the following selection field will be displayed:

<table>
<thead>
<tr>
<th>Inside diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mm</td>
</tr>
</tbody>
</table>

As mentioned in Section 12.4.3.2 „Input window / modify a value“, the current value can be changed.
13.12.4 Flow direction
This function allows the operator to define the flow direction that the transmitter will evaluate. Only “forward” should be selected so as to prevent reverse flow from being measured. The standard factory setting is “forward & reverse.” After selecting the Flow direction function, press .J to display the current setting.

As mentioned in Section 12.4.3.1 Selection window / make a selection the operator can choose between:
- forward
- reverse
- forward & reverse

13.12.5 Excitation frequency
With the help of the function Excitation frequency, you can set the excitation frequency of the field coil current. Since the excitation frequency depends on the sensor, it cannot be assigned freely. The excitation frequency defaults to 6.25 Hz.

The selection is confirmed and taken over with the .J-key.

Caution!
If the excitation frequency is changed, then a reference calibration (Section 13.10.3 Reference calibration on / off on page 64) must be accomplished! Otherwise the measuring accuracy is not ensured.
14. UMF2 (B) transmitter error messages
The integrated diagnostic system of the UMF2 (B) transmitter distinguishes between two types of errors. Self-test errors such as problems with a sensor line or inconsistent parameter inputs are displayed as textual error messages. Once the error has been eliminated, the message automatically disappears from the display. For further information, see Section 14.2.1 "Display of self-test errors".

Errors that are attributable to system memory or software, division by zero, or a fault in the electronics unit are designated as system errors. These error messages are not reset automatically after the error (usually of very brief duration) is eliminated. **Before resetting a system error manually, we advise that you contact our technical service department.** For further information, see Section 14.2.2 "Display of system error".

If the cause of any of the error messages described below cannot be eliminated, contact the device vendor.

14.1 Standard operating mode

The transmitter operates as described above. After the cause of the error message has been eliminated, the message automatically disappears.
14.2 List of error messages

14.2.1 Display of self-test errors

Self-test errors are displayed as plain text in the set language (German or English) on the second line of the LCD.

<table>
<thead>
<tr>
<th>Display (German)</th>
<th>Display (English)</th>
<th>Description</th>
<th>Possible cause of error and remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohr leer</td>
<td>empty pipe</td>
<td>Empty-pipe detection has been activated. Fluid density is below the limit value for density; empty-pipe detection, pipe is empty.</td>
<td>Product contains air bubbles/pipe is empty. Bubble-free filling must be ensured.</td>
</tr>
<tr>
<td>Spulenstrom</td>
<td>Exciter current?</td>
<td>Interruption / short circuit in the connection of excitation coil. All signal outputs will be set to no flow.</td>
<td>Check the wiring between transmitter and sensor.</td>
</tr>
<tr>
<td>Messkreis überst.</td>
<td>meas. circ. sat.</td>
<td>The flow measurement circuit is overloaded. The measured electrode voltage is too high. All signal outputs will be set to no flow.</td>
<td>Flow rate exceeds the upper range value (URL). High electrostatic voltage at the electrodes.</td>
</tr>
<tr>
<td>Strom überst.</td>
<td>curr. saturated</td>
<td>The output of current interface is overloaded. Based on the selected settings and the currently assigned measured variable, the current to be output is > 21.6 mA.</td>
<td>Check the upper-range value and the flow rate settings.</td>
</tr>
<tr>
<td>IMP übersteuert</td>
<td>pulse out satur.</td>
<td>The pulse output is overloaded. The current measured value requires a pulse rate, which can no longer be generated with the help of the set pulse duration and pulse value.</td>
<td>Check pulse duration, pulse value, and measuring range. Check the flow rate.</td>
</tr>
<tr>
<td>Parameter inkons.</td>
<td>params inconsist</td>
<td>Parameter is inconsistent.</td>
<td>Check the parameter settings. The set parameters are contradictory. Example: Upper-range value, pulse value and pulse duration must be matched in such a way that the combination fits for all measured values.</td>
</tr>
<tr>
<td>ext EEPROM fehlt</td>
<td>missing EEPROM</td>
<td>The data memory module (DSM) with the calibration data of the sensor and the customer-specific settings of the transmitter is not plugged-in.</td>
<td>Insert the data storage module (DSM) in the socket on the power supply board UMF2-20.</td>
</tr>
</tbody>
</table>
Information:
Error message: “Parameter is inconsistent” (system error 0x0400)?
To generate a list of the inconsistencies, first enter a valid password and then an invalid password. The control unit will show a list of current errors (only once). The operator can then correct the inconsistent settings after entering a valid password.

14.2.2 Display of system error
System errors consist of the message text “system error” and a 5-digit number in hexadecimal code. The meaning of the individual error codes is described in the following table. If several errors occur at the same time, the hexadecimal sum of the individual errors will be displayed. The errors are coded in such a way that the individual errors can be easily identified. The sums are unique.

<table>
<thead>
<tr>
<th>Descriptor label (never displayed)</th>
<th>Constant/display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemfehlerExtEEProm</td>
<td>0x00002</td>
<td>External EEPROM (data memory chip DSM) plugged in but empty, not initialized</td>
</tr>
<tr>
<td>SystemfehlerIntEEProm</td>
<td>0x00004</td>
<td>Internal EEPROM (calibration UMF2 (B) transmitter) erased, UMF2 uncalibrated</td>
</tr>
<tr>
<td>SystemfehlerEEPROM</td>
<td>0x00010</td>
<td>Unsuccessful saving or reading of memory data / defective memory</td>
</tr>
</tbody>
</table>

14.2.3 Reset system error
After the fault recovery the displayed system error message can be reset.

- For this purpose the customer password has to be entered. (Refer to 13.2.1 Customer-password on page 42).
- Select the function Show system error. (Refer to 13.11.5 Show system errors on page 68). Analyse the fault and repair the transmitter or sensor.
- Finally reset the system error message. (Refer to 13.11.6 Reset system error on page 68)
15. Certificates and approvals

CE-Marking: The measuring system complies with the legal requirements of the Electromagnetic Compatibility Directive 2004/108/EC and the Low Voltage Directive 2006/95/EC. The CE mark indicates that the device complies with the aforementioned directives.

16. Standards and authorizations

16.1 General standards and directives
EN 60529:2010 Ingress protection class (IP code)
EN 61010-1:2011 Safety requirements for electrical metering, control and laboratory devices
NAMUR guideline NE21, Version 2012-05-09

16.2 Electromagnetic compatibility
EMC Directive 2004/108/EC
EN 61000-6-2:2005 (immunity for industrial environments)
EN 61000-6-3:2007 +A1:2011 (emissions residential environments)
EN 55011:2009 +A1:2010 group 1, class B (emitted interference)
DIN EN 61326-1:2013
17. Decontamination certificate for device cleaning

Company name: Address:
Department: Name of contact person:
Phone:

Information pertaining to the enclosed magnetic-inductive flowmeter

Model

was operated using the following fluid:...................................

In as much as this fluid is water-hazardous / toxic / corrosive / combustible / a health hazard / environmentally hazardous

we have done the following:
- Checked all cavities in the device to ensure that they are free of fluid residues*
- Washed and neutralized all cavities in the device*
- Cleaned all seals/gaskets and other components that come into contact with the fluid*
- Cleaned the housings and all surfaces*

*cross out all non-applicable items

We hereby warrant that no health or environmental hazard will arise from any fluid residues on or in the enclosed device.

Date: Signature

Stamp